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 A. TYPE CONDITIONS FOR
 GENERAL MEASURES IN R

 Abstract. Given two Borei measures /1, 1/ in R1 , finite on compacts, we deal
 with the conditions v £ Aoo(t*) and v £ We point out several charac-
 terizing statements, expressed in terms of maximal functions, Av classes, reverse
 Holder inequalities, exponential type conditions, and their symmetric versions.
 We use ideas from [1] and [19] and extend their results to this rather general
 context (in the one-sided case we assume that /1 and v are mutually absolutely
 continuous). We consider an application to the Gehring lemma.

 1. Introduction

 In 1972, B. Muckenhoupt introduced the Ap classes of weights. He has shown
 [20] that a weight w in Rn belongs to Ap, 1 < p < 00, that is,

 W' I Q w (m ' Q I w"') / Q ' Q /

 if and only if the Hardy-Littlewood maximal operator

 Mf{x) = sup Í 'f(y)'dy ,
 QBx 'Q' J

 Q
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 while tu € A', that is, Mw < Kw, if and only if M is of the weak type (1,1)
 with respect to w,

 A f w < K j'f' w .
 { Mf>' }

 The class A«,, formed by the weights w satisfying

 ^1'1^ - K (ļ^ļ) ' E C ^ ' E measurable '
 where K and S do not depend on E and Q, and w(Q) = Jq w dx, was extensively
 studied in [7] and [21]. Both the endpoints of the Ap scale, the classes Ay and
 A0 o, are of exceptional significance. While there is a gap between A' and
 P)p>1 Ap (see e.g. [5], [11], [15], [16], [22]), one gets a different picture at
 the opposite endpoint: Aoo is exactly (Jp>1 Ap ([21], [7]). A lot of equivalent
 definitions of A«, are known (see e.g. [7], [14], [10], [11], [8]), and important
 applications of Aoo have been pointed out ([4], [2], [6]).

 While nearly the entire Ap theory has been translated to its one-sided (and
 one-dimensional) analog, A+ theory, initiated by the investigation of the one-
 sided maximal operator

 x+h

 M+f(x) = sup Ì / l/l
 fc>o h J

 X

 ([24], [17], [18]), the corresponding one-sided analog of A,», the class was
 introduced only recently in [19].

 One of the most important properties of Aoo is its equivalence to the reverse
 Holder (RH) inequality,

 Q Q

 K,6 independent of Q (see [7], [11]). The question what is the corresponding
 one-sided analog of the RH inequality was solved by F.J.Martin-Reyes [17],
 and called the weak RH inequality; he proved that if w G A+, 1 < p < oo, then
 there exist K, 6 such that

 fr 6

 J ií>1+í < K J w[M~ (wx(a,b))(b)]6 ,
 a a
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 and used this result to show that w 6 A~ļ implies w 6 A~ļ_e. In [19] it was
 shown that the last inequality is equivalent to G (in a somewhat more
 general context).

 Let us turn attention to measures. Coifman and Fefferman [7] studied
 and RH type conditions for doubling measures. Recall that fj, is said to be
 doubling if fi(2Q) < Kfi(Q), where 2 Q is a cube concentric with Q but with
 sides twice as long. If we define u G Aoo(fi) by

 EcQ - Bmeasurabk-

 K, 8 independent of E, Q, it follows from their result that the symmetry relation

 (1.2) v 6 Aoo(n) p G A^u)

 holds and that v G Aqo{h) is equivalent to the RH inequality

 ' Q / Q

 K , 8 independent of Q. The proof essentially relies on the Calderón-Zygmund
 decomposition lemma and entails therefore to assume the doubling condition.
 A comprehensive expository is given in [26].
 In Theorem 4.4 below we show that the symmetry relation (1.2) holds for
 general measures, too. Thus, our definition of v G A^fi) is consistent with
 (l.i).
 Translated to the one-sided case (1.2) naturally turns to the "anti-symmetry"

 relation

 v e A+cifi) fie A^(u) ,
 as shown in [19] for the case when ß and u are weighted measures, that is,
 dfi(x) = g(x)dx and du(x ) = w(x)dx with positive w and g.

 If we omit the doubling condition, we meet surprisingly difficult obstacles
 (cf. [25], [26], [9], [3], [1]). For example, Sjögren [25] showed that while the
 maximal operator

 M„f(x) = Sup-L^j'f(y)'dß(y)
 Q

 is in R1 always of weak type (1,1) with respect to fi, this is no longer true in
 Rn, n > 1, even not for n absolutely continuous with respect to the Lebesgue
 measure.
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 The fundamental paper of Andersen [1] develops a method allowing to extend
 the Ap and Aļ theory to the context of general measures in R1 .

 As far as we know, no attempts have been made to obtain results on A+, or
 ■^•oo type conditions for general measures. This is a subject of the present note.
 Our aim is to look backwards at the methods used by different authors and to
 point out how the theory rounds off, and not so much to obtain new results. For
 illustration, let us indicate the sources of our main results. Theorems 3.3 and 3.4
 below were shown in [19] in the case of weighted measures (thus, in particular,
 absolutely continuous with respect to Lebesgue measure). The statements of
 Theorem 4.4 have been subsequently proved to be equivalent in [7], [10], [14]
 and [13] under the doubling condition, see also [26]. We shall show (Section 3)
 how the one-sided theory works with general measures and afterwards (Section
 4) use the results obtained to prove the two-sided theorems. It follows from the
 proof of Theorem 4.4 that the symmetry relation (1.2) can be proved (in R1)
 assuming merely that ¡à and v are Borei measures finite on compact sets, i.e.,
 without the doubling condition or any absolute continuity. This yields some
 interesting consequences; for example, it sheds light on the relation between
 two conditions of exponential-logarithmic type, which are both equivalent to
 Aqo : the Hruščev condition

 T (w'Iw) ^ (mhiīS) -
 and the Fujii condition

 sup -j- w(Q) J Í log+ f J u,(a:) dx < K , Q w(Q) J '™Q J
 Q

 where wq = w(Q)/'Q'. The equivalence between these two conditions, which
 is not quite obvious, was pointed out in [13], but again under the doubling
 condition.

 Further, we show that Ace is equivalent to the reverse Holder inequality,
 again using the one-sided results instead of the Calderón-Zygmund theory.
 Here, the main disadvantage of our approach appears again: it does not apply
 to the higher-dimensional case.

 Finally, we prove (Theorem 4.5) the analog of Gehring's lemma [12].
 As usual, K will always denote absolute constant, independent of appropriate

 quantities. We write (a, b ) for an open interval, [a, 6] for a closed interval and
 {a, 6} for an interval which might be either open or closed. We shall write E
 for a Borei set in R. The products of type 0 • oo will be taken to be zero.
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 2. Definitions and preliminary results.

 Let (j, be a nonnegative Borei measure in R, finite on compact sets (as known,
 then ¡i is regular [23], Theorem 2.18). We put

 Mt f(x) = SUP -r - ® -TJĀ J Í I-A dļi ' h> o -r ® -TJĀ J
 [x,x+/i)

 f(x) = sup M* u(t ' i J / l/l ; /i>0 M* u(t i J
 (x - hjx]

 M^fix) = SUp M-0 Tr' / [ l/l ^ > /3* M-0 /
 I

 where I denotes an interval in R (of. [1]).

 2.1. Definition. Let w be a weight (nonnegative ¡immeasurable function) in
 R1. We say that w e A+(ļi), p € (1, oo), if

 (2.1) ļ i w dfi' if < Kn(a,c)
 Va, 6] ) 'b,c) J

 with some K independent of a < 6 < c, where p' = p/(p - 1).
 We say that w € (¿í) if M~ w(x) < Kw(x) for /¿-almost all x. Similarly,

 w e A-(n), pe (i, oo), if

 (2.2) ļ i w dfj,) If tū1_P'd/iļ < Kfi(a,c )
 V>c) / 'a,b) J

 and w € .Aj~(//) if M^w(x) < Kw(x ) for ļi-almost all x.
 We say that w E Ap(fi), p 6 (1, oo), if

 wdfi^ wl~p' d/i^ < Kfi(I)
 for some K independent of interval I in R.

 We say that w € Aļ (/z) if M ß w < Kw ļi-almost everywhere.

 The following theorem is due to Andersen [1].
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 2.2. Theorem. Let p > 1. Then the following statements are equivalent.

 (i) f ( M+f)p wdļi < Kf 'f'Pw dp ;

 (ii) w e A+(n) ;

 (iii) w1 -p' € ;

 (iv) J (M~ f)p w1'*' dļi < K /|/|p'w1~p' dļi .

 2.3. Remark. It is es&y to see that Ap(p) = Aļ(fi) n A~(p), p > 1, and that

 ma x{M"/,M+/} < M„f < M+ f + M~ f .

 Therefore, w € Ap(fi), p > 1, if and only if

 J (Mpf)* w dfj, < K J 'f''w du .

 By the same argument as in [18] with trivial changes we can prove the fol-

 lowing factorization theorem (we have only to realize that [M+ (l/l")]1^ and

 [M; (1/1°)]"° are sublinear operators for a > 1, and use (Andersen's) Theo-
 rem 2.2.)

 2.4. Theorem. Let p > 1. Then

 Afa) =A+W-[Ar ,

 that is, each w E A+(¿i) can be factorized as w = u>o -w'~p, where wq 6 Af(fi),
 Wļ G Aļ"(/i). Similarly,

 A~(p) =Ar(»)- [A+(v)]1-p ,

 and

 Ap(fi) = AM - [AM]1-' .
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 3. One-sided problems.

 Let fi, v be nonnegative Borei measures in R, finite on compact sets, and let
 moreover fi be absolutely continuous with respect to v and vice versa.

 3.1. Definition. We say that v E A^0(fi) if there exist K, 8 positive such that
 for all a < b < c and E C [6, c)

 /z(a,c) 'v(a,o]J

 3.2. Remark. Obviously, v E A+J^fì) implies However, unlike in the
 two-sided case, as we shall see, ^ can vanish on a set of positive measure (for
 example, put dv(x) = dx and dfi(x) = Xfo.oo)^)^,)- Thus, v E A^(fi) does
 not imply v «C ft. But, since we want to study natural relationship between
 v E A¿(/x) and ft E A^ts) (which, of course, would imply v <C fi), it is
 only reasonable to avoid trivial cases by assuming that p and u are mutually
 absolutely continuous (note that they need not be absolutely continuous e.g.
 with respect to Lebesgue measure).

 In what follows we put w(x) = We know from absolute continuity
 that such w exists and 0 < w(x) < oo //-almost everywhere. We shall often
 write w E A¿(/x) instead of v E A¿(/x).

 The next two theorems were proved in [19] in the case of weighted measures.

 3.3. Theorem. The following statements are equivalent.

 (i) There exists p > 1 such that w E A+(fi);
 (ii) w E A+(fi);
 (Hi) for any a G (0, 1) there exists ß E ( 0,1) such that for all a < b < c and

 Ec[b,c)
 V(E) * . KE)
 -r-Tļ < ß * implies . r ' < a ; -r-Tļ u[a, b' fi[a r , c)

 (iv) for every a E (0, 1) there exists ß E (0, 1) such that the following impli-
 cation holds: whenever A > 0 and a < b are such that

 (3.1) A < v'a'xl for all x E (a, 6] ;
 fi{a,x)

 then

 fi({x E {a, b)-, w(x)>ß'}) > afi{a,b) ;
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 (v) for every a G (0, 1) there exists ß G (0, 1) such that the following impli-
 cation holds: whenever A > 0 and a < b are such that (3.1 ) holds and

 /x{a,6) - 2A'
 then

 /¿({xG{a, b); w(x) > ß'}) > ocļi{a, b) ;

 (vi) there exist K,S > 0 such that for all a <b

 j w1+6dfi < K j wdļi-[Mll{wx(a, 6]) (&)] 6 ;
 (a,6] (a, 6]

 (vii) there exist K, 6 > 0 such that for all a < b

 »,)(») 2 jr^íwxwiX»)]' ;
 (viii) there exists p > 1 such that ^ G A~(v);
 (ix) there exists K such that for all a <b < c satisfying //(a, b) < | //(a, c) <

 /i(a, b)

 K° » &] I 1 /, 1 j I ^ < if y -7 - » • exp I / log - d// j I ^ < if y ; -7 H(a,b] 'fi[b,c) J w I
 ' [»,«) /

 (x) w e A~(v) ;
 (xi) for any a G (0, 1) there exists ß G (0, 1) such that for all a < b < c and

 E C (a, b]
 P(E) a ■ »• U(E) y '
 r, 1 < ß a implies ■ »• y ' < a ; /x[6,c] r, 1 u(a,c]

 (xii) for every a G (0, 1) there exists ß G (0, 1) such that the following
 implication holds: whenever A > 0 and a < b are such that

 (3.2) A < ^ for all x G [a, 6),
 i/(x, o)

 then

 1/(1* G (a, 6}; _1^>/?A|) > ai/(a,6};
 (xiii) for every a G (0, 1) there exists ß G (0, 1) such that the following

 implication holds: whenever A > 0 and a < b are such that (3.2) holds and

 4^4 i /(a, 6} s 2A> i /(a, 6}
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 then

 > ai /(a, 6} ;

 (xi v) there exist K, 8 > 0 such that for all a < b

 j w-^6Uv < K J 1 du • Mv (a) !
 M) M)

 (xv) there exist K,8 > 0 such that for all a < b

 (xvi) there exists K such that for alia < b < c satisfying u(b , c) < |i/(a, c) <
 KM

 ^ I I i/(a,6] / h y / log 10 dl/i J - K • u[b,c) I i/(a,6] h y J
 ' («.»] /

 Proof, (i)^(ii) can be proved completely in the same way as in [19], that
 is, using Holder's inequality and A+,

 WE))' < v(E)(J < ifk«.'))'^ļ ' , E '

 which is it; e A^{ļi) with 6 = l/p.

 (ii)=>-(iii) is easy; we have only to realize that w 6 A'^0(fi) is equivalent to

 4Qr (x[a,c) < K-(4^n)' 'v[a,b]J . a<i<c, ÍC[l,c). ' (x[a,c) 'v[a,b]J . '

 This follows by the usual limiting argument.

 (iii)=>(iv): Let A and {a, b) be as in (iv). We put Xq = b and, for any negative
 integer k ,

 Xk = inf{x Ç {a, 6); 2 ku{a,b) < u{a, x]} .

 Now, (3.1) yields that limfc_>_00 Xk - a, and the sequence {s*} is (not neces-
 sarily strictly) decreasing. It follows from the definition of {a:*} that

 (3.3) u{a,Xk) < 2kt/{a, b) < v{a,Xk] .
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 Put T={ke - N; Xk ^ arjfc+i}, then {a, 6) = |J [x*,x*+i) (we note that if
 *er

 {a, 6) = [a, 6), T is finite).
 We claim that for any k

 v{a,xk+i) < Au[xk-i,xk] .

 Indeed, using twice (3.3), we get

 u{a,xic+i) < 2k+1u{a,b) = 4(2* - 2k~1)u{a,b)
 <4(t/{a,xk]-u{a,xk-i)) = 4v[xk-i,xk] .

 Thus

 A < ^[Xk-l^k]
 ~ zjfc+i)

 and we can estimate the measure of

 Eß = {lÉ {a, 6); iu(x) < ßX}

 in the following way: For any k,

 i '(Eß fi xjb+i )) < ßX fi(Eß H [gfc,gfc+i))
 v[xk-!,xk] - v[xit-i,Xk]

 < 4 < iß
 fi{a,xk+1)

 Given 7 G (0, 1), we can (by (iii)) choose ß so that

 n(Eß fi [xfc,XŁ+1)) <
 /i[xfc_j,xj|.+1] ~

 Therefore

 fi({xe{a,b); w(x) > ßX}) = /i ([x*, xjt+i) ' Eß)
 *er

 ^ 53 /*[**» **+i) ~ 7
 iter ter

 > fi{a, 6) • (1 - 37) ,

 since each point of {a, 6) belongs at most to 3 intervals of type £*+1],
 fcG r.

 (iv)=r-(v) is obvious.
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 (v)=Kvi):
 Define Ao = M~ (t£>X(a, &])(&) and take A > Ao. Then (cf. [28], Theorem 1.3.8,

 and [1], proof of Theorem 1)

 {x G (a, 6]; w(x) > A} C { M~(wx(a,b ]) > A} = ,
 3

 where {aj, bj) C (a, 6] for all j and

 A < y{gj,g)
 Ļi{a.j, x)

 for all x 6 (aj, bj].
 We fix j and define xo = a,j,

 A, = {«eh,«;
 H'CLj , X)

 and x' = sup^4i if A' ^ 0, and x' = xo if Aļ = 0. Suppose that xn_j is
 chosen. If xn_i = bj, we stop the process. If xn_i < bj , we put

 fe^2"A>
 and xn = sup^4n if An 0 and xn = xn_i if An = 0.

 Now, let n(j) be the least integer k such that x* > aj, and put

 TO') = {k e N ' {n(i)}; xk < xjt+i}.

 Observe that xn y bj, and so

 { cLj,bj ) = {aj, xn(j)) U ļ^J (xn,xn-ļ-i).
 nero)

 Moreover, the following estimates are true:

 v{ajixn(j)) < 9 n(j)' .
 ß{aj,xn(j))

 2"(j) lA - n'aj,J) X € ;
 and, for n > n(j) and n € IX;),
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 xn+l) <- 2n+1A *
 ¡J.'Xni ®n+l )

 and

 2"A < XnJ) ie(lR,In+l1 •
 Only the last estimate needs proof, the preceding three follow immediately

 from the definition of xn and the <7-additivity of fi. If x 6 (xn,xn+i], we have

 2 A/¿[xn_i,x) < i/[xn_i,x)

 and therefore

 u[xn,x) = i/[xn_i,x) - i/[xn_i,xn) > 2nA/z[x„,x).

 Now, using the estimates just proved and (v) we obtain

 viah xn(j)) ^ 2 ^A/i{aj,xn(j))
 < m{x € {aj,xn(j)); w(x) > 2n(,">-1j9A}

 and, for n € T(j),

 f[®n,®n+i) < 2n+1A/i[xn,xn+1)

 < a-12n+1A/i{x € [xn,xn+i); w(x)>2nß'}.

 Let us put Xjtk :=
 We continue as in [7], that is, we sum in j, multiply both sides by Ai_1 and

 integrate from A0 to oo to get
 OO

 J A5-1 • v({x € (a, 6]; w(x) > A|) d'
 Ao

 oo

 < 5^[a_12n(,) I '6n{x € {aj,xjMj)y, w(x) > 2 n^)~1ß'}dX
 j o

 OO

 + a_12n+1 [ € [x¿n,xi>n+ 1); w(x) > 2nß'}dX ] .
 «er (i) ¿

 Changing the variables À - > 2n^"1 ß' and À - > 2nßX on the right we arrive at

 Ì J w'+i(x)dß-^(a,b] < ap + Ļ + 1) J w' + l(x)dß,
 (a, 6] (a, 6]
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 which yields (vi) if 6 is sufficiently small.

 (vi)=^(vii) is obvious.

 (vii)=>(viii): Let a < b < c be such that //(a, 6] > 0. By (vii), for x G [6, c),

 / W*dl/)1/6 ^ (^(wSX(a,X]){x))1/6
 (a,6]

 < K Mp ( WX(a,c )) (*) •

 As Mß is of weak type (1,1) with respect to fi (see [25]), we have

 -i -i/«

 /¿[6, c) < K [u(a, c)]1+1^5 J w6 du ,
 _( a,b ]

 or, ļi e A~(u) with p = 1 +

 Now, many other implications follow by symmetry: For example, (viii)=>(x)
 is just a symmetric version of (i)=»(ii) and so on. In this way we subse-
 quently obtain (viii)=^(x)=>-(xi)=^-(xii)^(xiii)=^(xiv)=^(xv)=»(i). What remains
 is to include the exponential type conditions (ix) and (xvi) into the chain.
 We shall do it proving (i)=*-(ix)=>-(v); the symmetric argument will then give
 (viii)=¿-(xvi)=3>(xiii) and round off the entire proof.

 (i)=i>(ix): Since w Ç

 j y-i
 b] 1 f , I Tr

 H(a,b] b] n[b,c ) J f , H I Tr *
 ' I»,c) /

 holds for all a < b < c such that n(a,b) < ì/z(a, c) < ļx(a,b'. By Jensen's
 inequality applied to the convex function exp((p' - l)s) we get

 exp (ii ' b> I6.*) J Iog / ^ ' [M / (¿)' á") / ' I6.*) / ' [M /

 and (ix) follows.
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 (ix)^-(v): Let {a, 6) and A be as in (v). First, let {a, b ) = (a, b). We put
 xo = b and find x_i in order that

 H{a,x- 1) < ^¿t(a,6) < /i(a,x_i] .

 We know that /x(a, x) > 0 for x G (a, b). Hence, having xo, x_i , . . . , x*, we can
 choose Xjfc_i so that

 fi(a,x jfe_i ) < ^/i(a, Xk) < ii(a,Xk- 1] .

 Now, we can proceed as in [11] and [19].
 We find at such that

 f log ( - - ' dp = 0 . J 'OtkW )
 [n.It+l)

 Now, if (ix) holds for w, it also holds for ctkW, whence

 «JfcA < ,ak . f du < K , Ka>xk' . J
 (a.**]

 and thus, using the inequality log(l + x) < x,

 /.«*€[»>,*>+,); W(l)<ß'}) < ^1 + y(atm J <»«><¥
 [xk,xk+l)

 - Alog(l + 1/Kß) J iv-
 [z*,X«e + l)

 Summing in k and using < 2A,

 „({* 6 (a, 6); *(x) < fi'}) < A ^ *ļ/( g ß)), v(a, b)
 2 K

 - log(l + l /(Kß)f{a,b) '
 and it suffices to talee ß small enough.

 If {a, 6) = [a, 6), we choose x<> = 6 and x*, k € - N so that

 //[a,x*_i) < i/i[a,Xfc) < fi[a,Xk- 1] ,

 and stop in the case that a = x*_i. Then we proceed as above.
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 3.4. Theorem. Let p G (l,°o) and let us denote a = w1 p> and ds = <?dß.
 Then the following statements are equivalent.

 (i) w G A+cifi) and a G A^(fi);

 (ii) M- (wX(a,b]) ( b ) < K (Ms ( ~ X(a,6]) (6))P_1 for all a < b;

 (iii) w G A+(n) .

 Proof, (i)^-(ii): Let a < 6 be such that fi(a,b] > 0. We take x,y G (a, 6]
 such that

 (3-4) Ka,y) < 'ß{a-,h] < v(a,y] ,
 and

 (3.5) (¿(a,x) < ^ß(a,y] < n(a,x] .
 It is easy to see that a < x < y < b, and further

 (3.6) ß[x, b] < 3fi[x,y] ,

 and

 (3.7) ļi[x, 6] < 2fi[y,b' ,

 By (i), w G for some r > 1. Jensen's inequality and (3.5) yield

 i 1 i I w du • exp I 1 f log - dļi J < K . Ka,xi i i J exp ' /4*,y] J *> }
 (°»r] ' [*>y] /

 Similarly, a G A~(/j.) for some q > 1. Jensen's inequality and (3.6), (3.7) yield

 imlad" exp to/losH - *• [f.6l V [*,y] )

 Raising this inequality to p - 1 and multiplying both inequalities we get

 [ī^' ' hAlrihi ļ «A ï K< ' (<»>*] / ' [y, 6] /
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 which implies

 J w dfi < Kß(a,x] (m, ^X(a,6]^ (&))
 (o,x]

 Let us put xo - a, xi = x, then

 J wdfl < K/i(x0,Xi] ^Ma ^X(a,6]^ (b)j

 Suppose that Xo,- • • ixk are chosen. If /i(x*,6] = 0, we we put arjt+i = b and
 stop. Otherwise we choose x*+i as above with (a, 6] replaced by (x*, 6]. Then
 a < xi < X2 < • • • < &, and

 (3.8) J w d fi < K fi{x k-' , zjb] ^Ms ^X(o,6]^ (&)^
 (l*_l,X|,]

 It is easy to see that

 j^/i(xfc_i,xfc] = fi(a,b]
 k

 and

 y; j wdfi = J wdfi .
 * (zk-i.Cfc] («.&]

 Indeed, by (3.4) and (3.5) we have

 3
 ¿í(xi,6] = fi(a,b] - n(a,x'' < -fi(a,b] .

 By the induction we get

 g)'*.«.
 and so lim*-too fi(xk,b] = 0.

 Summing (3.8) in k we obtain

 < tf[M,(iX(.,41)Wp ,
 (o,6]
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 which implies (ii).

 (ii)=»(iii): Let a < b < c. For x G [fe, c) we have

 ¿¿ó / wJ>' s K (Mś (?*<••<>) (x)) •
 (a, 6]

 Then, since Ms is of weak type (1,1) with respect to ds, we obtain

 ¡*-'«**[■71%) " (a'c) •
 [M '(0)6] /

 which is (iii). For details see [19].

 (iii)^(i) follows easily from the fact that w G j4+(/¿) is equivalent to cr G
 A~,(ļi) via Theorem 2.2.

 3.5. Remark. It follows from Theorems 2.4 and 3.4 that for p G (1, oo)

 AfW-fArW]1-' = A+(„) = A+wn [A-

 4. Two SIDED PROBLEMS

 In this section we assume merely that fi and v are nonnegative Borei measures
 in R, finite on compact sets. We shall use I for an interval in R.

 4.1 Definition. We say that fi is comparable to u, fi, ~ u, if there exist a, ß G
 (0, 1) such that for E C I

 v(E) < ßu(I ) implies l¿(E) < ■

 4.2. Remark. The relation ~ is equivalence , especially 'i ~ v if, and only if,
 v ~ ļi. Moreover, if ļi ~ v, then obviously ¡j, and v are mutually absolutely
 continuous. Thus, there exists w such that dv = w du, 0 < w(x) < oo almost
 everywhere.
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 4.3. Definition. We say that v G Aoo(fi) if there exist positive 8, K such that
 for all I and E C I we have

 KD - {•>(!) J '

 The following two theorems generalize (in R1 ) the corresponding results from
 [7], [10], [14], [13] and [11].

 4.4. Theorem. The following statements are equivalent.
 (i) v ~ n;
 (ii) v 6 Aooin);
 (iii) n E Aooiu);
 (iv) there exists p > 1 such that w G Ap(n);
 (v) there exists p > 1 such that ^ € Ap(u);
 (vi) there exist K, 8 > 0 depending only on /x, v such that for all I

 ! v i/(i+«)

 (¿)/u,1+íd") ! - K7ļī)ļwdl1 1
 (vii) there exist K, 8 > 0 depending only on ļi, v such that for all I

 / » ii ' X/(1+Ä)

 (ss/ / (9 » ii *) ' X/(1+Ä) - Kt(ījļhd'"'
 (viii) there exists a constant, K, such that

 T (¿) /""*") exp (wJlog(r„) ;
 (ix) there exists a constant, K, such that

 s/p ^ i ) J log+ ) w(x)d^x) ^ K •
 I

 Proof. We know from the one-sided theorems that Aoo = Up>i Ap. Thus,
 the equivalence of the first five statements easily follows from the fact that
 •^OO = -^OO ^ ^OO'
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 (v)=¿>(vi): Let ¿ € M") for some p. Then

 / ' 1/,P / 1~p' ' l^P'

 [I(h)wd") / ' (/(») / 1~p' wi") ' ¿Kjwd>''
 that is,

 / ' 1/P'
 (w)r''ä" ) iKmr*'

 and (vi) with 8 = p' - 1 follows.

 (vi)=^(iii): By Holder's inequality and the reverse Holder inequality (vi),
 / v 1/(1 + «)

 u(E) < ljw1+6dfi'
 , V 1/(1 + «)

 = ( -"jy ļ W1+S dß J • fi(E)6^1+6) • Aí(/)1/(1+Í>

 < • K*) • /i(/)1/(1+í) • KE)S/(1+S) = K ■ "(I) ■ (^y(1+S) ,
 which is (iii).

 (ii)^(viii) follows by using Theorem 3.3 and Remark 2.3.

 Analogously we prove that (iii) is equivalent to

 (4.1) sup J exP ^¡^7) J logu; * wdl^j ^ K •
 However, this is nothing but (ix). To see this it suffices to apply log to both
 sides of (4.1) and use the argument from [13] and [14] to resume the "+" sign.

 The rest of the theorem follows by symmetry.

 The implications (vi)=^(ii)=i>(i) and (iv)=^(i) are true also in Rn, n > 1 (see
 [26], Chap. I, Lemma 12).

 As currently adopted, we shall write w 6 JŁff(1+i)(/z) if the statement (vi)
 from Theorem 4.4 is satisfied.

 Similarly as in [27] (or [15]) it can be proved that

 (4.2) w 6 RHp(fi) & wp e Aoo(fi) .
 We shall use this result to prove the analog of Gehring's lemma (cf. [12]).
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 4.5. Theorem. Let I be an interval in R1, g a nonnegative function on I,
 g 6 and let q € (l,oo). Assume that

 (4-3) mi/* s K {mļ**)
 for all intervals I' C I. Then there exists ó > 0 such that for all p G [</, q + S)
 we have

 (4A) ml/** s * {ml/"") ■

 Proof. For the purpose of this theorem assume that supp fi G I. It follows
 from (4.3) that g € RHg(n), whence, by (4.2), gq € Aoo(fi). In other words,
 there is a positive £o such that for any e € ( 0,e<j ) and all intervals JcR

 (' i/d+e)
 which is (4.4) with p = g(l + e) and I' = J fi I.

 4.6. Theorem. Let p € (1, oo). The following statements are equivalent.
 (i) w € AņoĻu) and cr = io1-ì>' E A00(fj,);

 (ii) w e Ap(fx).

 Proof. This equivalence follows easily from Theorem 3.4 and Remark 2.3.
 An alternative proof can be given employing Theorem 4.4. For details cf. [11],
 Theorem IV.2.17.
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