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Cantor Type Sets of Positive Measure
and Lipschitz Mappings*

Introduction. During the XVth Summer Symposium on Real Analysis
A.M.Bruckner and J.Smital asked the author the following question. If E;, E, C
R are non-empty, nowhere dense, perfect and each portion of E;, or of E, is
of positive Lebesgue measure does there exist a “nice” function, f, mapping
E; onto E;. By nice functions they meant C!, C?, differentiable, or Lipschitz
functions. During the conference the author made an example of sets E;, E; C
[0, 1] satisfying the above conditions such that there exists no Lipschitz (and a
fortiori no C! or C?) function defined on [0, 1] which maps E; onto E,. This
paper contains this example. The differentiable case seems to be more involved.
In fact we do not know whether there exists a differentiable f : [0,1] —» R
satisfying f(E;) = E; for the sets E; and E; defined in this paper.

This paper is organized in the following way. First we state our main result.
Then we define the sets F; and E; and give a list of a few basic properties of
these sets. Finally we prove a lemma which implies our main result by showing
that any Lipschitz function mapping F; into E, is mapping E; onto a set of
measure zero. On the other hand in the Lemma we also show that if f is
differentiable and Lipschitz at the points of a portion of E; then f'(z) = 0 for
any r belonging to this portion. If f is differentiable on [0,1] then f' is Baire-
one and it is easy to find portions of E; where f is Lipschitz and differentiable.
This shows that the example of a differentiable f, mapping E; onto E, should
have zero derivative on a set which is dense and open in E;. However this
property (and some other properties) turned out to be insufficient (at least for
the author) to verify the nonexistence of a differentiable f mapping E; onto
E,.

In this paper we denote the Lebesgue measure of the set A by A(4). We
say that f is Lipschitz with constant L on a set 4 if |f(z) — f(y)| < L- |z —y|
for every z,y € A.

The statement of our main result.

Theorem. There ezist non-empty, nowhere dense, perfect sets Ey, E; C
[0,1] such that each of their portions is of positive Lebesgue measure and there
exists no Lipschitz function f : [0,1] —» R satisfying f(E,) = E,.
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Definition of the sets E; and E;. Put Ny = 1. If N,,_; is defined
for an n € {1,2,...} put M, = 42*N,_;, M} = 4"Mp,, N, =2-4"-n - My,
N], = 4"N,,. Therefore M, N, M},, N], are defined by induction forn = 1,2, ....
Put E o = Ey = [0,1]. If Ey n—1, E2 n—1 are defined for an n € {1,2,...} put

_1( Q24 k240

Eln—Eln—l\U M. M, M )

and L - .
2. 4= 2.4n-1 41
N’.—l — ————————— —— ——————————————————————
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n

Finally let E; = N2, E1,» and E; = N, Es .

Properties of the sets E; and E,;. Some of the properties are obvious
consequences of the definition of the sets E; and E; in these cases we leave the
details of their verification to the reader.

Property 1. The sets E; and E; are non-empty, nowhere dense and
perfect.

Property 2. The intervals which are contiguous to E; (to E;) and are of
length 1/M},, (of length 1/N}, ) are exactly the ones which are contlguous to
Eim (to Ez,m) for m > n and are of length 1/M},, (of length 1/N}).

Property 3. If an interval of the form [k/M,, (k +1)/M,] C Ej n—1 then
at the nth step an interval of length 1/M}, = 4" /M, is removed from it. At
the mth step (m > n) an easy calculation shows that

k k+1 -1 4'"-l £ 2.4m141.\ 47
Therefore
ME1,m N [k/Mp,(k+1)/M,])>(1-47" - 41— 4~ ™)/ M,

and hence A(Ey N[k/My,(k+1)/M,]) > 0. This implies that any portion of E;
is of positive Lebesgue measure.

Property 4. Similarly to Property 3 one can show that any portion of E;
is of positive Lebesgue measure.

Property 5. If I = [a,b] C E; , then the longest subinterval of I contigu-
ous to I N E; is of length not more than 1/Mj, ;.

Property 6. Denote by v, the number of connected components (i.e.
maximal closed subintervals) of E ,. If we denote by v}, the number of intervals
contiguous to E; 5 from 1,0 € E; , it follows that v + 1 = v,. (We do not
count the halflines (—o00,0) and (1,00) as contiguous subintervals.) It is also
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clear that v), < M+ Mp_1+...+ My <n-M, if n > 1. Therefore v, < n-M,
ifn>1.

Property 7. Denote by x,, the number of connected components of E; ,.
Observe that

2.4771 2.47-1 41
N ’JTI:_*-_—N,', ))\

n

1 k
By = ([0 11\ UL (7= +

2.4 k£ 2.4m141
N ' Nn N

An easy calculation shows that the number of the connected components of
A\ B; is more than N, — 471N, and in general the number of connected
components of A\ U},_; By, is more than N, — (47! + ... + 477)N,,. Therefore
Kn>Np(l1—471— . —47"1) > N, (1 - m) > N,/2.

Property 8. One can also easily verify that the length of the connected
components of E p, is less than 4" /N, = 1/N,,. We also remark that if z and y
belong to different connected components of E, , then the length of the largest
subinterval of [z, y] contiguous to E; , N [z,y] is at least 1/N".

Property 9. Also a similar calculation shows that the length of the con-
nected components of Ey , is more than (2-4"~' — 1)/M! > 4"~!/M' and
less than 4™ /M. Using Property 2 it is easy to see that the endpoints of the
connected components of E; , all survive the inductive definition of E;, that
is, if [c, d] is a connected component of E; , then ¢,d € Ej.

n— - k -
\unzh (Ul (5= + ))= A\ UzZ) B,

Lemma. Assume that E,,E; are defined as above, (a,b) C [0,1], the
function f:[0,1] — R is continuous, furthermore f is Lipschitz with constant
L on (a,b) N Ey, and f((a,b) N Ey) C E;. Then A(f((a,b) N E;)) = 0.

If, in addition, we also assume that f is differentiable at the points of
(a,b) N Ey, then f'(z) =0 for every z € (a,b) N E;. :

Proof of the Lemma. Choose ng such that

M; 4rtl. g2(n+1) . Iy
1 ntl =4 5 I for n> n,.
(1) N 4" N, =

Assume that I denotes a connected component of E; , and z,y € I N E,.
According to Property 5 the longest subinterval in I, contiguous to I N E;, is
of length not more than 1/M},. Denote by J the closed interval with endpoints
f(z) and f(y). Since f is Lipschitz on INE, the length of the longest subinterval
in J\ f(INE,) is not more than L/My, ;. Since by (1) we have L/M!,, < 1/N,
for n > no the second half of Property 8 implies that f(z) and f(y) belong to
the same connected component of E; ,,.
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Denote by p, the number of connected components of (a,b) N E; n. We
proved that f maps points belonging to the same connected component of
(a,b) N E;,, onto points belonging to the same connected component of E; ;.
It is also obvious that u,, < v,. By Property 6 we have v, < n-M, forn > 1.

Therefore p, < n+- M,. On the other hand, by Property 8 the length of the
connected components of E; ,, is less than 1/N,. This implies that

n-M, n- M, 1
N, 2 4n .n .- M, 2-4"'

A(f((a,0) N En)) < = .<_

Since this estimate is valid for any n > no we obtain that A\(f((a,b)NE;)) =0.

Assume now that f is differentiable at the points of (a,b) N E; and z €
(a,b) N E,. For any n € {1,2,...} denote by I, = [cpn,dys] the connected compo-
nent of Ej , for which z € I,,. Choose n; > ng such that I, C (a,b) for n > n;.
Denote by J, the connected component of E; ,, for which f(z) € J,. By Prop-
erty 8 the length of J, is less than 1/N,. By Property 9, A(I,) = dpn — cn >
4"~1/M! and c,,d, € E;. Since z € [cp,dy] either z — ¢, > 471 /2M], or
d, —z > 4""1/2M!. Thus

N,, Tqn—1 T gn-ip,

min(| f(z) = f(cn)

$—Cn

|f($) — f(dn) ) < 2M,, 1

Therefore letting n — oo we can find a sequence y, € {dp,cn} such that y, — =,

and
lim f(z) = f(yn) -0

n—oo T — Yn

This implies f'(z) = 0 and concludes the proof of our lemma.

Proof of the Theorem. Properties 1, 3 and 4 imply that E; and E,
satisfy the assumption of the theorem, and the first part of the Lemma applied
with (a,b) = (0,1) shows that for any map satisfying f(E,) C E2 we have
A(f(E1)) = 0 and hence f(E;) # E,.
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