Zoltán Buczolich, Eötvös Loránd University, Department of Analysis, Budapest, Múzeum krt. 6-8, H-1088, Hungary.

Cantor Type Sets of Positive Measure and Lipschitz Mappings*

Introduction. During the XVth Summer Symposium on Real Analysis A.M.Bruckner and J.Smítal asked the author the following question. If $E_1, E_2 \subset \mathbb{R}$ are non-empty, nowhere dense, perfect and each portion of E_1 , or of E_2 is of positive Lebesgue measure does there exist a "nice" function, f, mapping E_1 onto E_2 . By nice functions they meant C^1 , C^2 , differentiable, or Lipschitz functions. During the conference the author made an example of sets $E_1, E_2 \subset [0,1]$ satisfying the above conditions such that there exists no Lipschitz (and a fortiori no C^1 or C^2) function defined on [0,1] which maps E_1 onto E_2 . This paper contains this example. The differentiable case seems to be more involved. In fact we do not know whether there exists a differentiable $f:[0,1] \to \mathbb{R}$ satisfying $f(E_1) = E_2$ for the sets E_1 and E_2 defined in this paper.

This paper is organized in the following way. First we state our main result. Then we define the sets E_1 and E_2 and give a list of a few basic properties of these sets. Finally we prove a lemma which implies our main result by showing that any Lipschitz function mapping E_1 into E_2 is mapping E_1 onto a set of measure zero. On the other hand in the Lemma we also show that if f is differentiable and Lipschitz at the points of a portion of E_1 then f'(x) = 0 for any x belonging to this portion. If f is differentiable on [0,1] then f' is Baireone and it is easy to find portions of E_1 where f is Lipschitz and differentiable. This shows that the example of a differentiable f, mapping E_1 onto E_2 should have zero derivative on a set which is dense and open in E_1 . However this property (and some other properties) turned out to be insufficient (at least for the author) to verify the nonexistence of a differentiable f mapping f onto f author) to verify the nonexistence of a differentiable f mapping f onto f and f author) to verify the nonexistence of a differentiable f mapping f onto f author)

In this paper we denote the Lebesgue measure of the set A by $\lambda(A)$. We say that f is Lipschitz with constant L on a set A if $|f(x) - f(y)| < L \cdot |x - y|$ for every $x, y \in A$.

The statement of our main result.

Theorem. There exist non-empty, nowhere dense, perfect sets $E_1, E_2 \subset [0,1]$ such that each of their portions is of positive Lebesgue measure and there exists no Lipschitz function $f:[0,1] \to \mathbf{R}$ satisfying $f(E_1) = E_2$.

^{*} Research supported by the Hungarian National Foundation for Scientific Research, Grant No. 2114.

Definition of the sets E_1 and E_2 . Put $N_0 = 1$. If N_{n-1} is defined for an $n \in \{1, 2, ...\}$ put $M_n = 4^{2n}N_{n-1}$, $M'_n = 4^nM_n$, $N_n = 2 \cdot 4^n \cdot n \cdot M_n$, $N'_n = 4^nN_n$. Therefore M_n , N_n , M'_n , N'_n are defined by induction for n = 1, 2, Put $E_{1,0} = E_{2,0} = [0,1]$. If $E_{1,n-1}$, $E_{2,n-1}$ are defined for an $n \in \{1, 2, ...\}$ put

$$E_{1,n} = E_{1,n-1} \setminus \bigcup_{k=0}^{M_n-1} \left(\frac{k}{M_n} + \frac{2 \cdot 4^{n-1}}{M'_n}, \frac{k}{M_n} + \frac{2 \cdot 4^{n-1} + 1}{M'_n} \right)$$

and

$$E_{2,n} = E_{2,n-1} \setminus \bigcup_{k=0}^{N_n-1} \left(\frac{k}{N_n} + \frac{2 \cdot 4^{n-1}}{N_n'}, \frac{k}{N_n} + \frac{2 \cdot 4^{n-1} + 1}{N_n'} \right).$$

Finally let $E_1 = \bigcap_{n=1}^{\infty} E_{1,n}$ and $E_2 = \bigcap_{n=1}^{\infty} E_{2,n}$.

Properties of the sets E_1 and E_2 . Some of the properties are obvious consequences of the definition of the sets E_1 and E_2 in these cases we leave the details of their verification to the reader.

Property 1. The sets E_1 and E_2 are non-empty, nowhere dense and perfect.

Property 2. The intervals which are contiguous to E_1 (to E_2) and are of length $1/M'_n$, (of length $1/N'_n$) are exactly the ones which are contiguous to $E_{1,m}$ (to $E_{2,m}$) for $m \ge n$ and are of length $1/M'_n$, (of length $1/N'_n$).

Property 3. If an interval of the form $[k/M_n, (k+1)/M_n] \subset E_{1,n-1}$ then at the *n*th step an interval of length $1/M'_n = 4^{-n}/M_n$ is removed from it. At the *m*th step (m > n) an easy calculation shows that

$$\lambda\Big(\Big[\frac{k}{M_n},\frac{k+1}{M_n}\Big]\cap \cup_{\ell=0}^{M_m-1}\Big(\frac{\ell}{M_m}+\frac{2\cdot 4^{m-1}}{M'_m},\frac{\ell}{M_m}+\frac{2\cdot 4^{m-1}+1}{M'_m}\Big)\Big)=\frac{4^{-m}}{M_n}.$$

Therefore

$$\lambda(E_{1,m} \cap [k/M_n, (k+1)/M_n]) \ge (1 - 4^{-n} - 4^{-n-1} - \dots - 4^{-m})/M_n$$

and hence $\lambda(E_1 \cap [k/M_n, (k+1)/M_n]) > 0$. This implies that any portion of E_1 is of positive Lebesgue measure.

Property 4. Similarly to Property 3 one can show that any portion of E_2 is of positive Lebesgue measure.

Property 5. If $I = [a, b] \subset E_{1,n}$ then the longest subinterval of I contiguous to $I \cap E_1$ is of length not more than $1/M'_{n+1}$.

Property 6. Denote by ν_n the number of connected components (i.e. maximal closed subintervals) of $E_{1,n}$. If we denote by ν'_n the number of intervals contiguous to $E_{1,n}$ from $1,0 \in E_{1,n}$ it follows that $\nu'_n + 1 = \nu_n$. (We do not count the halflines $(-\infty,0)$ and $(1,\infty)$ as contiguous subintervals.) It is also

clear that $\nu'_n \leq M_n + M_{n-1} + ... + M_1 < n \cdot M_n$ if n > 1. Therefore $\nu_n \leq n \cdot M_n$ if n > 1.

Property 7. Denote by κ_n the number of connected components of $E_{2,n}$. Observe that

$$E_{2,n} = \left([0,1] \setminus \bigcup_{k=0}^{N_n-1} \left(\frac{k}{N_n} + \frac{2 \cdot 4^{n-1}}{N_n'}, \frac{k}{N_n} + \frac{2 \cdot 4^{n-1} + 1}{N_n'} \right) \right) \setminus \frac{1}{N_n}$$

$$\setminus \cup_{m=1}^{n-1} \left(\cup_{k=0}^{N_{m}-1} \left(\frac{k}{N_{m}} + \frac{2 \cdot 4^{m-1}}{N'_{m}}, \frac{k}{N_{m}} + \frac{2 \cdot 4^{m-1} + 1}{N'_{m}} \right) \right) = A \setminus \cup_{m=1}^{n-1} B_{m}.$$

An easy calculation shows that the number of the connected components of $A \setminus B_1$ is more than $N_n - 4^{-1}N_n$, and in general the number of connected components of $A \setminus \bigcup_{m=1}^{j} B_m$ is more than $N_n - (4^{-1} + ... + 4^{-j})N_n$. Therefore $\kappa_n > N_n(1 - 4^{-1} - ... - 4^{-n+1}) > N_n(1 - \frac{1}{4 \cdot (1 - (1/4))}) > N_n/2$.

Property 8. One can also easily verify that the length of the connected components of $E_{2,n}$ is less than $4^n/N'_n = 1/N_n$. We also remark that if x and y belong to different connected components of $E_{2,n}$ then the length of the largest subinterval of [x,y] contiguous to $E_{2,n} \cap [x,y]$ is at least $1/N'_n$.

Property 9. Also a similar calculation shows that the length of the connected components of $E_{1,n}$ is more than $(2 \cdot 4^{n-1} - 1)/M'_n > 4^{n-1}/M'_n$ and less than $4^n/M'_n$. Using Property 2 it is easy to see that the endpoints of the connected components of $E_{1,n}$ all survive the inductive definition of E_1 , that is, if [c,d] is a connected component of $E_{1,n}$ then $c,d \in E_1$.

Lemma. Assume that E_1, E_2 are defined as above, $(a, b) \subset [0, 1]$, the function $f: [0, 1] \to \mathbf{R}$ is continuous, furthermore f is Lipschitz with constant L on $(a, b) \cap E_1$, and $f((a, b) \cap E_1) \subset E_2$. Then $\lambda(f((a, b) \cap E_1)) = 0$.

If, in addition, we also assume that f is differentiable at the points of $(a,b) \cap E_1$, then f'(x) = 0 for every $x \in (a,b) \cap E_1$.

Proof of the Lemma. Choose n_0 such that

(1)
$$\frac{M'_{n+1}}{N'_n} = \frac{4^{n+1} \cdot 4^{2(n+1)} \cdot N_n}{4^n N_n} = 4^{2n+3} > L \quad \text{for } n \ge n_0.$$

Assume that I denotes a connected component of $E_{1,n}$ and $x,y \in I \cap E_1$. According to Property 5 the longest subinterval in I, contiguous to $I \cap E_1$, is of length not more than $1/M'_n$. Denote by J the closed interval with endpoints f(x) and f(y). Since f is Lipschitz on $I \cap E_1$ the length of the longest subinterval in $J \setminus f(I \cap E_1)$ is not more than L/M'_{n+1} . Since by (1) we have $L/M'_{n+1} < 1/N'_n$ for $n \ge n_0$ the second half of Property 8 implies that f(x) and f(y) belong to the same connected component of $E_{2,n}$.

Denote by μ_n the number of connected components of $(a,b) \cap E_{1,n}$. We proved that f maps points belonging to the same connected component of $(a,b) \cap E_{1,n}$ onto points belonging to the same connected component of $E_{2,n}$. It is also obvious that $\mu_n \leq \nu_n$. By Property 6 we have $\nu_n \leq n \cdot M_n$ for n > 1. Therefore $\mu_n \leq n \cdot M_n$. On the other hand, by Property 8 the length of the connected components of $E_{2,n}$ is less than $1/N_n$. This implies that

$$\lambda(f((a,b)\cap E_1))\leq \frac{\nu_n}{N_n}\leq \frac{n\cdot M_n}{N_n}=\frac{n\cdot M_n}{2\cdot 4^n\cdot n\cdot M_n}=\frac{1}{2\cdot 4^n}.$$

Since this estimate is valid for any $n > n_0$ we obtain that $\lambda(f((a,b) \cap E_1)) = 0$. Assume now that f is differentiable at the points of $(a,b) \cap E_1$ and $x \in (a,b) \cap E_1$. For any $n \in \{1,2,...\}$ denote by $I_n = [c_n,d_n]$ the connected component of $E_{1,n}$ for which $x \in I_n$. Choose $n_1 \geq n_0$ such that $I_n \subset (a,b)$ for $n > n_1$. Denote by J_n the connected component of $E_{2,n}$ for which $f(x) \in J_n$. By Property 8 the length of J_n is less than $1/N_n$. By Property 9, $\lambda(I_n) = d_n - c_n > 4^{n-1}/M'_n$ and $c_n, d_n \in E_1$. Since $x \in [c_n, d_n]$ either $x - c_n \geq 4^{n-1}/2M'_n$, or $d_n - x \geq 4^{n-1}/2M'_n$. Thus

$$\min\left(\left|\frac{f(x) - f(c_n)}{x - c_n}\right|, \left|\frac{f(x) - f(d_n)}{x - d_n}\right|\right) \le \frac{1}{N_n} \cdot \frac{2M'_n}{4^{n-1}} = \frac{1}{4^{n-1}n}.$$

Therefore letting $n \to \infty$ we can find a sequence $y_n \in \{d_n, c_n\}$ such that $y_n \to x$, and

$$\lim_{n\to\infty}\left|\frac{f(x)-f(y_n)}{x-y_n}\right|=0.$$

This implies f'(x) = 0 and concludes the proof of our lemma.

Proof of the Theorem. Properties 1, 3 and 4 imply that E_1 and E_2 satisfy the assumption of the theorem, and the first part of the Lemma applied with (a,b)=(0,1) shows that for any map satisfying $f(E_1)\subset E_2$ we have $\lambda(f(E_1))=0$ and hence $f(E_1)\neq E_2$.

Received September 24, 1991