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 Mean Value Properties for Symmetrically
 Differentiable Functions

 Section 1. Introduction and Notation

 Functions considered in this note will be real valued functions defined on

 the real line IR. Results obtained here will also apply to functions defined on
 intervals. Such a function / : IR i - »• IR, is said to have a symmetric derivative,
 f'(x), at the point x if

 /•(,) J v ' = Hm /(» + *) - /('-*). J v ' A-+0+ 2 h

 We say that / is symmetrically differentiable if f'(x) exists (infinite values
 permitted) for each x € 1R, and say that a symmetrically differentiable func-
 tion / possesses the Mean Value Property (MVP) if for each a < b, there
 exists a £ 6 (a, 6), such that

 m _ Mīl.
 b - a

 One shortcoming of symmetric differentiation, when compared to ordi-
 nary differentiation, is that continuous symmetrically differentiable functions
 with finite symmetric derivatives need not possess the MVP, as evidenced by
 the absolute value function. The purpose of this note is to observe some
 conditions which may be placed on a symmetrically differentiable / under
 which it will, at least, possess a weakened form of the MVP, and then to seek
 additional requirements on fs which will guarantee that / has the MVP. In
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 particular, we shall show (Corollary 1) that a symmetrically differentiable,
 Baire 1, Darboux function / will possess the MVP if and only if fa possesses
 what we shall call the weak Darboux property. We need to define a few more
 terms and state some background results.

 Recall that we say a function / : 1R 1R is Darboux (or / G T>) if for every
 a < b, and every C strictly between f(a) and f(b), there is a c G (a, b ) such
 that /(c) = C. We shall say that a function / is strongly Darboux (/ G D+ )
 if / + / 6 T> for every linear function l(x) = ex, c G IR. Next, we shall say
 that a function / is weakly Darboux (/ G T>~) if for every a < b, every C
 strictly between f(a) and /(&), and every S > 0, there is a c G (a - 6, 6+ S)
 such that /(c) = C. Further, we shall say that / is very weakly Darboux
 (/ G V ) if for each x G 1R,

 liminf f(t) < f(x) < lim sup f(t).
 *-** t-fi

 We pause to make the following simple observation.

 Remark 1 The following strict inclusions hold:

 X>+ C V C T>~ C V~~.

 Proof. Certainly, the only inclusion that might require verification is
 the last. Assume that / G 2?" and suppose there is a point x where f(x) <
 lim inft^ f(i). Let {ťn} be a sequence of points converging to x for which
 limn-too /(ín) = L = liminf Without loss of generality we may
 assume that each tn is greater than x. By the weak Darboux property we
 know that for each n there is a point cn G (x-l/n, tn+l/n) for which /(cn) =
 (f(x) + f(tn))f 2. Since {cn} converges to x and {/(cn)} converges to (/(x) +
 L)/ 2 < L, we have reached a contradiction. Consequently, no such point
 x exists. Similarly, there can be no point x where f(x) > limsupt_łiC/(i),
 and hence / G . Furthermore, the Baire 1 function g which assumes the
 value 0 on (- oo,0] and 1 on (0, oo) clearly belongs to V ' T>~ .
 In [2] A. M. Bruckner gives an example of a Baire 2 function / G T> such

 that f(x) + x (fc T> and hence / G "D ' . Thus the first inclusion is strict.
 Finally, the Baire 1 function g given by

 í 1 if x < 0
 g(x) = < 0 if x = 0

 ( sin(l/x) if x > 0
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 clearly belongs to D ' T>.

 As in [5], we say that a function / belongs to class M_i if it is measurable
 and very weakly Darboux. This class M_i has previously found use in the
 study of symmetric differentiation, in particular in monotonicity results. In
 [10] C. E. Weil proved the following result, in which /a(x) denotes the lower
 symmetric derivate of / at x; i.e.,

 - v ' fc- »0+ 2h

 Theorem W Let f : H •-» 1R be a Baire 1, Darboux function with /*(x) > 0
 for all x. Then f is nondecreasing.

 Evans [5] extended this to the following:

 Theorem El Let f : 1R t-» ffi, be a function for which f3(x) > 0 for all x.
 Then f is nondecreasing if and only if f € .

 A symmetrically differentiate function / will be said to possess the Quasi
 Mean Value Property (QMVP) if for each a < b, there exist and £2 in (a, b),
 such that

 /'«.) < /(t? o ~ - f a (a) < /*(6), o - a

 and will be said to possess the weak Quasi Mean Value Property (wQMVP)
 if for each a < 6, there exist and £2 in [a, 6], such that

 /"(€.) < m < /'((,).
 b - a

 Section 2. Mean Value Results

 We begin by stating the following two known results concerning mean
 value type properties for symmetrically differentiable functions. The first is
 due to C. E. Aull [1] and the second to Evans [5].
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 Theorem A A continuous, symmetrically differentiable function possesses
 the QMVP.

 If no type of continuity condition is assumed, then we cannot expect to
 get the QMVP or even the wQMVP as the characteristic function of the
 origin demonstrates. We do have the following, however.

 Theorem E2 A symmetrically differentiable function in class M_x possesses
 the wQMVP.

 Without additional hypotheses this latter result cannot be improved to
 obtain the QMVP. For example, consider the function which is 0 for x < 0
 and 1 for x > 0, and let a = 0 and 6=1. However, if we assume that
 the function in Theorem E2 has the strong Darboux property, then we can
 recover the QMVP.

 Theorem 1 A strongly Darboux, symmetrically differentiable function pos-
 sesses the QMVP.

 Proof. Let a < b. We need to show the existence of and £2 in ( a,b ),
 such that

 m < /■({,).
 0 - a

 We shall establish the existence of £1 here and £2 can be handled analogously.
 Suppose that no such point 6 (a, b) exists. Then the function

 F(x) = /(*) - /(6>~/(a)(x - <.)
 0 - a

 is symmetrically differentiable with F*(x) > 0 for all x G (a, b), and F(a) =
 F(b). This F is a Darboux function, being the sum of a strongly Darboux
 function, a linear function, and a constant function. Furthermore, F is mea-
 surable. This follows from the result of J. Uher [9] that any symmetrically
 differentiable function is measurable. (See also [8].) Theorem El may now
 be employed to conclude that F is nondecreasing on (a, 6) and since F G X>,
 it must also be nondecreasing on [a, 6]. However, since F(a) = F(b), this
 means that F is constant on [a, 6], contradicting the premise that F3(x) > 0
 for all x € (a, 6). Hence, the point £1 must exist and our proof is complete.
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 We now look for a necessary and sufficient condition to place on the
 symmetric derivative of the function / in the hypothesis of Theorem A or
 Theorem 1 in order that QMVP can replaced by MVP in the conclusion. It
 is fairly easy to see that requiring f9 € Af_i is not enough, while requiring
 /* 6 V is too strong. To see the former, notice that the function f(x) =
 |x| has f* € M_i, yet / fails to have the MVP. For the latter, we shall
 show the existence of a continuous function / which is finitely symmetrically
 diiFerentiable, possesses the MVP, and yet has a symmetric derivative which
 fails to possess the Darboux property. To this end, let / be given by

 ,/ X _ í -X if X G (-00, 0]
 ' ~ ļ x2sin(l/x2) if X 6 (0, 00).

 This / is diiFerentiable everywhere except x = 0 where it is symmetrically
 diiFerentiable with symmetric derivative /'(0) = -1/2. It is easy to see that
 this function has the MVP. Indeed, if the two points a < b satisfy ab > 0,
 then we may apply the mean value theorem for ordinary derivatives; and if
 a < 0 < b, then there are infinitely many choices for points c 6 (0, b) such
 that

 /•(c) = f(c) = 2csin(l/c3) - = /(>)-/(«).
 c b - a

 However, f clearly fails to have the Darboux property as /*(x) = -1 on
 (-oo,0), yet /'(0) = -1/2.
 These observations, combined with Remark 1, make it seem plausible that

 the weak Darboux property might be the condition we seek and, indeed, we
 have the following theorem.

 Theorem 2 If the symmetrically differentiable function f € , then f
 possesses the MVP if and only if f € T>~ .

 Proof. Let / € be symmetrically diiFerentiable, with f € T>~ , and
 let a < b. From Theorem 1 we know that there are £1 and £2 in (a, 6), such
 that

 /'(i.) < m. ~ /(a) < /'(&)•
 0 - a

 Without loss of generality we assume that £1 < £2. Choose 6 such that
 (£1 - S, £2 + C (a,b). Employing the weak Darboux property of f, we
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 know there is a £ G (£i - £2 + such that

 m . ¿ñzM.
 o - a

 Hence / has the MVP.
 Conversely, suppose that / G T>+ is a symmetrically differentiable func-

 tion which possesses the MVP. Let a < b and suppose that fs(a) < C <
 fs(b). Define the function G by G(x) = f(x) - Cx. Then G is a Dar-
 boux, symmetrically differentiable function which has the MVP. Further-
 more, Gs(a) < 0 and G'(b) > 0. Let 8 > 0. Since Gs(a) and Gs(b) have
 opposite signs, G clearly fails to be monotone on (a - 6, b + 6). This fact,
 together with the fact that G is a Darboux function, implies that there exist
 two points xi and x2 in (a - 6,b + 6) such that G(xi) = G(x 2). Applying
 the MVP, we obtain a point c G (x',X2) such that (js(c) = 0. Consequently,
 fs(c) = C, and it follows that f possesses the weak Darboux property.

 Corollary 1 If f is a Baire 1, Darboux, symmetrically differentiable func-
 tion, then f possesses the MVP if and only if f 3 E T>~ .

 Proof. If / G BļT> , then / G T>+ as it is well known that the sum of a
 B'D function and a continuous function is B'T>' e.g., see [2].

 Corollary 2 If f is a Darboux, finitely symmetrically differentiable function,
 then f possesses the MVP if and only if f* G T>~ .

 Proof. Z. Charzyński [3] showed that if a function has upper symmetric
 derivate less than +00 everywhere, then it is continuous at every point with
 the exception of a scattered set, where a scattered set is a set having no dense
 in itself subset. (See also [6].) Such a function must be a Baire 1 function
 and we may now apply Corollary 1.

 In light of the fact that a symmetrically differentiable function is differ-
 entiable almost everywhere [9], it might be anticipated that the point £ of
 the MVP in Theorem 2 or Corollaries 1 and 2 can always be chosen to be a
 point of ordinary differentiability. However, this is not the case, even if / is
 continuous and f G T> as the following construction shows.
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 Remark 2 There is a continuous, symmetrically differentiable function f
 with the following properties:

 1. fģ 6 V.

 2. f is even, i.e., f(x) = /(- x) for every x, and hence /*(0) = 0.

 3. The ordinary derivative never assumes the value 0.

 Proof. For each natural number n let /„ = [l/(n + l), 1/n]. Let (^„(x) =
 n(x - l/(n + 1)) + l/(n + 1), and <72, n(®) = (l/n)(x - Vn) + Vn5 i*e-> the
 graph of gi¡n is a straight line having slope n passing through the point
 (l/(n + l),l/(n + l)) and the graph of <72,71 is a straight line having slope 1/n
 passing through the point (1/n, 1/n)- Define the function g by

 Íx g(-x) 0 min{0i,n(x), 92,n(x)} if if if x x x x € = > < In 0 0. 1

 min{0i,n(x), 92,n(x)} x € In
 0 if x = 0

 g(-x) if x < 0.

 This function g is not differentiable at the origin, having -1 as a left
 derivate and 1 as a right derivate there. However, g is symmetrically differ-
 entiable. Clearly, <7*(0) = 0 and the only other places in (0, 00) where g fails
 to be differentiable are at the endpoints of each Jn and at the point xn € In
 where <7i,n(£„) = <72,n(®n)- At each of these points g has a finite left and right
 derivative and hence a symmetric derivative. For every x > 0, g"(x) > 0
 and in every open interval having 0 as a left endpoint g* assumes arbitrarily
 large and arbitrarily small positive values. The only shortcoming of g is that
 g3 V. We clearly may remedy this situation by "rounding" the corners
 of the graph of g on each In, to obtain a differentiable function / on (0, 00)
 with f'(x) > 0 for all x > 0. We set /(0) = 0, and f(x) = f(-x) for x < 0.
 Then / will have all the required properties.

 Before concluding this paper, we wish to take note of the analogues of
 the prior results in the situation where symmetric differentiation is replaced
 by approximate symmetric differentiation. A function / : IR ► IR is said to
 have a approximate symmetric derivative, fļv(x), at the point x if

 rs ( ' 1- f(x + h)-f(x-h)
 fap(x) rs ( ' = op - hmh-+ 1- 0+ -
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 We say that / is approximately symmetrically differentiable if fļp(x) exists
 (infinite values permitted) for each x € IR.. H. Croft's [4] familiar example
 of a Baire 1, Darboux function which is zero almost everywhere, but not
 identically zero , provides an example showing that the direct analogue of
 Corollary 1 will not hold, as this function will clearly have approximate sym-
 metric derivative zero everywhere. If, however, we strengthen the Baire 1,
 Darboux condition to approximate continuity, then the following two theo-
 rems result.

 Theorem 3 If f is an approximately continuous, approximately symmetri-
 cally differentiable function, then for each a < b, there exist £i and £2 in
 (a,b), such that

 /:,((•) < /(i¡ Z i(a) < /¿.(fc)-

 Proof. This result may be confirmed by following the proof given for
 Theorem 1 except that instead of employing the monotonicity Theorem El,
 one should use the much deeper monotonicity result of C. Freiling and D.
 Rinne [7], which states that if an approximately continuous function has a
 non-negative lower approximate symmetric derivative everywhere, then the
 function is non-decreasing.

 Having made this observation, the next result follows precisely in the
 same manner that Theorem 2 followed from Theorem 1.

 Theorem 4 If f is an approximately continuous, approximately symmetri-
 cally differentiable function, then the following are equivalent:

 1. f'apev~.

 2. For each a < b, there exists a Ç G (a, b), such that

 Corresponding to Remark 2, we wish to observe that the point £ of the
 previous theorem need not be a point of either approximate differentiability
 or of symmetric differentiability.
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 Remark 3 There is a continuous, approximately symmetrically differen-
 tiable function f with the following properties:

 i ■ f!r e ī>.

 2. There is a set S of positive numbers having right density one at 0 such

 that f(x) = f(-x) for all x € S, and hence fļp( 0) = 0.

 3. Neither the approximate derivative nor the symmetric derivative of f
 ever assumes the value 0.

 Proof. If S is a set, we shall let - S = {x : - x € S'}. For each
 natural number n > 3 let Jn = [- rr> ^r] = [°n, en]. We divide Jn into two

 subintervals, Hn = [^, ^ = [a„,d„] and In = ^r] =
 [dn, en]. We set

 _ lÄ-i _
 " M.I 2-> '
 _ |ď.| _ 1

 S" _ |/„| _ 2-' -l'
 and

 f _ l«^nl ~ (1 + _ «2n-2 _ nn-1 _ -,
 rn'Hn'

 We label two interior points of Hn , each close to an endpoint as bn = an +
 r„|//n| and cn = dn - rn'Hn'. Note that an < bn < cn < dn < en.

 We shall first define a function g. We set g(x) = 1/8 for all x with
 |z| > 1/8. We define g on each In by

 g{x) = sn(x en) -|- en,

 and on each - by
 </(*) = g{-x).

 Since Un=3 In clearly has right density one at the origin, regardless how we
 define g on {0} U USU#«, 0âp(O) = 0.

 On Hn we define g by

 / '

 W
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 and on - Hn by

 q(j.'
 "H ®n) "I" Öji if X G [ bn, Oji].

 Finally, we set <7(0) = 0. On each J„ and each - J„, g is a continuous,
 piecewise linear function. On each open interval having the origin as a left
 endpoint, gs is positive and takes on arbitrarily large and arbitrarily small
 positive values; and on every open interval having the origin as a right end-
 point, gs is negative and takes on arbitrarily large and small negative values.
 Since ^ôp(O) = 0 and g(x)/x >1/2 for every x > 0, it follows that g is
 not approximately differentiate at 0. To see that g is not symmetrically
 differentiate at the origin, it will suffice to show that

 Um g'"0-) - * 0.
 2 cn

 Toward this end, note that

 1 1 1 1 22n-2 + 2n_1 - 1
 c" - 2n+! 22n - 2n_1 22n - 23n_1 '

 1 1 _ 22n~2 + 1
 9(cn) 2»»+i 23n_1 _ 23n_1 '

 and

 , x _ 1 1 1 11^ 22n_1 - 2"-1 - 1
 9{, Cn) _ - 2 n 22n 2n_:l - 1 2n_1 22n ^ 23n_1

 Hence,
 g(cn) - g(-Cn) ^ 22n~3 - 22n"2 + 2n-2 + 1

 2cn 22n-2 + 2n_1 - 1

 and since this latter fraction tends to - ì as n - ► oo, g is not symmetrically
 differentiate at the origin.

 This function g has all the properties mentioned in the statement of this
 remark except gļp fails to have the Darboux property. This, however, is easily
 remedied by rounding the corners of the graph of g on each Jn and - Jn to
 obtain a function / which is differentiate on both (- oo, 0) and (0, oo). This
 function / will then have all of the stated properties.
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