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APPROXIMATE SYMMETRIC DERIVATIVES ARE
UNIFORMLY CLOSED

It is well-known that the class of all derivatives is closed with respect to the uni-
form convergence. It is also known that the class of symmetric derivatives and the
class of approximate derivatives are uniformly closed, [K] and [W]. Consequently,
the intersection of these two classes is obviously uniformly closed. In contrast to
this observation, we shall prove that the class of approximate symmetric deriva-
tives of Lebesgue measurable functions is also uniformly closed. We shall also show
that there is an approximate symmetric derivative of a measurable function that
is not simultaneously a symmetric derivative and an approximate derivative. Note
that all these functions belong to the first Baire class [L].

Let us begin with some definitions. We shall deal with finite real functions
defined on an open real interval Iy. For a measurable set A C Iy, the upper
density of A at z is d(A,z) = limsupA(A N [z — h,z + h])/2h as B — 0+ () is
the Lebesgue measure on the real line R). The lower density d is defined in a
similar manner. When these two values are the same, the common value d(A4, )
1s the density of A at z. The upper symmetric derivative of F at z is F (z) =
limsup(F(z+h)—F(x—h))/2h as h — 0+. The lower symmetric derivative of F at
z, F*(z), is defined similarly. When these two coincide, the common value Fs(z)
is the symmetric derivative of F' at z. The lower approximate symmetric derivative
of F at z, F; (), is the least upper bound of the collection of @ such that the
set A(a) = {t: (F(z+1t)— F(z —t))/2h < a} has density zero at 0. The upper
approximate symmetric derivative, F, (z), is defined similarly. When F,(z) =
F3,(z), the common value F},(z) is the approximate symmetric derivative of F' at
z.

In the next proof we will follow some ideas of [M] and [Br], pp. 154-157.

Lemma. Let F : Iy — R be a nondecreasing function. Then F*(z¢) = F3 (o)
and F’(zo) = F,_(20) hold for each z¢ € I,.

Proof. Suppose that there exists an o and a finite a such that F*(zo) < a <
F; (o). Since F is nondecreasing, F*(zo) > 0 and so a > 0. Choose € > 0 such
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that F*’(z¢) < a — 2¢. Then there exists a sequence {h,} of positive numbers
converging to 0 such that

(F(zo+ hy) — F(zo — hy))/2hn < a — 2¢

holds for each n.

We shall show for each n that the inequality (F(zo+t)— F(zo—1))/2t < a—¢€ s
valid for all ¢ in (—hn, —hn(l—€/(a—¢)))U(hn(1—€/(a—¢)), ky). Since the relative
measure of this set in [—hy, hy]is €/(a—¢€) and h, — 0 as n — oo, it will follow that
the upper density at zero of the set A(a—¢) = {t : (F(zo+t)—F(z0—1))/2t < a—¢}
is at least £/(a — €) > 0. This will imply that F; (zo) < a — ¢, a contradiction.

Let h € {h,}. Then, (F(zo+ k) — F(zo— k))/2h < a —2¢. Put a = (F(zo+
h)+ F(zo— h))/2 and consider the linear functions L and Lo which satisfy L(zo) =
Lo(zo) = a and have slopes a — € and a — 2¢, respectively. Choose z; and z; such
that L(z,) = F(xo+ k) and L(z;) = F(zo — k). Then obviously

zy = zo+ (F(zo+h)—a)/(a—€) and

z; = zo—(a— F(zo—h))/(a—e).
Since F is nondecreasing we have
(%) F(z) < F(zo+ h) < L(z) for = € (z1,70+ k) and

L(z) < F(zo— h) < F(z) for z € (z¢ — h, 3).

To compute the length of intervals [z1,zo + k] and [zo — h, z3] observe that
h— (F(zo+ k) — a)/(a —€)
= (hla—€)— F(zxo+ h)+a)/(a—¢)
= (L(zo+h) - F(zo+)/(a— )
> (L(zo+ h) — Lo(zo + }))/(a —€)
= hef(a—e¢).

o+ h—x

Analogously it can be shown z; — (zo — ) > he/(a — €). Thus
[zo+ h(1 —€/(ax—€)),z0+ k] C [z1,20 + k] and
[zo — hyzo — h(1 — €/(a — €))] C [zo — h, z2].

It follows from (*) that (F(zo+t)—F(zo—1))/2t < (L(zo+t)—L(zo—1))/2t = a—¢
when t € (—h,—h(1 —¢/(a —€))) U (h(1 — ¢/(a — €)), h), as was to be proved.
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The argument for the upper approximate symmetric derivative and the upper
symmetric derivative is similar. (If F, (zo) < a < a + 2¢ < F’(o), we deal with
t € (—h(1+¢/(a+¢€)),—h)U (h,h(1 +€¢/(a +¢€))). Then the upper density at
zero of the set B(a +¢) = {t: (F(zo+t) — F(xo —t))/2t > a + €} is at least
e/(a+¢€) >0 and F, (z0) > a + ¢, a contradiction.)

Theorem 1. Let F be a nondecreasing function defined on an open interval
I,. If F has the approximate symmetric derivative at z, then F' has the symmetric
derivative at * and F*(z) = F} ().

Proof. If F has the approximate symmetric derivative at z, then Fg,(z) =
F;(z) = F,,(z) and the theorem follows from Lemma.

Theorem 2. Let F be a measurable approximately symmetrically differen-
tiable function on Io and let G be symmetrically differentiable on Io. If F},(z) <
G*(x) everywhere on Iy, then there exists a symmetrically differentiable function
f:Io — R such that f(z) = F(z) a.e. on Iy and F}(z) = f*(z) everywhere on
I,.

Proof. Since G is symmetrically differentiable on Iy, it is symmetrically
continuous on Iy, i.e. lim(G(zo + k) — G(zo — h)) = 0 as h — 0 for each z
in Io. According to the paper [B], G is continuous almost everywhere on I,
and hence G is measurable. Let H = G — F. Then H is measurable and
H; (z) = G3,(z) — F},(z) > 0 holds everywhere on Ip. It follows from Theo-
rem 2 of [FR] that H is nondecreasing on the set A of all points for which H is
approximately continuous. Define the function & : Iy — R in the following way:
h(z) = H(z) for z € A,h(z) = sup{H(¢) : t < z,t € A} for z € I, — A. The
function h is obviously nondecreasing. Since H is measurable, A(I, — A) = 0 and
Mz : h(z) # H(z)} = 0. According to Theorem 1, h*(z) = h,(z) = H;,(z) holds
everywhere on Jo. Let f = G—h. Then f(z) = F(z) a.e. on Ip and f*(z) = F},(z)
everywhere on Ij.

Corollary. Let F be a Lebesgue measurable function, approximately symmet-
rically differentiable on Io. If F?, is locally bounded, then there is a Lebesgue mea-
surable, symmetrically differentiable function f : Io — R such that f(z) = F(z)
a.e. on Io and f*(z) = F;,(x) everywhere on I,.

Remark. An approximately symmetrically differentiable function need not be
measurable. Assuming the continuum hypothesis, W. Sierpinski has shown that
there is a nonmeasurable function f : R — R with f?,(z) = 0 for every z in R [S,
Corollaire 4].
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Theorem 3. The class of all approximate symmetric derivatives of measurable
functions is closed with respect to the uniform convergence.

Proof. Let {f,}{°, where f, : Iy — R, be a sequence of approximate symmetric
derivatives of measurable functions and let f, — f uniformly. Then there is an
no > 0 such that |f, — f| < 1 whenever n > no. Define g, = f, — fn, for n > no.
Obviously, |gn| < 2 and g, — f— fa, uniformly. According to the Corollary, {gn}3>
is a sequence of symmetric derivatives. Since g, — ¢ = f — f,, uniformly, g is a
symmetric derivative (see [K]). Hence f = g + f,, is an approximate symmetric
derivative.

Example. We show that there is an approximate symmetric derivative of
a measurable function that is not simultaneously a symmetric derivative and an
approximate derivative.

Let Ip be an open real interval and zo € Io. Let {a,} and {b,} be two sequences
in I such that inequalities a, < b, < an41 < zo hold for every n, that a, — zo
and d(U(@n,bs),z0) = 0. Put ¢, = 1(an + b,) and define a function F : [, —» R
in the following way: F(z) = 0 for ¢ & U(an,bs), F(c,) = 1 for every n, F(z) =
(z — an)/(cn — an) for € (an,cs) and F(z) = —(z — by)/(bn — ¢4) for = €
(¢n,bn). Obviously F is Lebesgue measurable and approximately symmetrically
differentiable on Io. If f = F},, then f(z) = 0 for z & Ulan,b,] and z = c,, f(z) =
(cn — an)7! for = € (an,cn), f(z) = —(bp — cn)7! for € (cn,bn), f(z) = (2(cn —
a,))~! for z = a, and f(z) = —(2(b, — ¢»))~! for z = b,. Since every approximate
derivative has the Darboux property (see [Br]) f is not an approximate derivative.
We show that f is not a symmetric derivative of measurable function. Suppose
that there is a measurable function G : Iy — R such that G* = f. Put H = F -QG.
Then H, = F;, — G3, = 0, and according to Theorem 2 of [FR| H is constant
on the set A of all points for which H is approximately continuous. Since H is
measurable, the set A is of full measure in I,. Without loss of generality we can
suppose H(z) = 0 everywhere on A. Hence G(z) = F(z) everywhere on A and
—o00 = G*(z0) < G (z0) = 0, a contradiction.
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