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 APPROXIMATE SYMMETRIC DERIVATIVES ARE
 UNIFORMLY CLOSED

 It is well-known that the class of all derivatives is closed with respect to the uni-
 form convergence. It is also known that the class of symmetric derivatives and the
 class of approximate derivatives are uniformly closed, [K] and [W]. Consequently,
 the intersection of these two classes is obviously uniformly closed. In contrast to
 this observation, we shall prove that the class of approximate symmetric deriva-
 tives of Lebesgue measurable functions is also uniformly closed. We shall also show
 that there is an approximate symmetric derivative of a measurable function that
 is not simultaneously a symmetric derivative and an approximate derivative. Note
 that all these functions belong to the first Baire class [L].

 Let us begin with some definitions. We shall deal with finite real functions
 defined on an open real interval Io. For a measurable set A C Io, the upper
 density of A at x is d(A,x) = limsupA(A D [x - h,x + h])/2h as h - ► 0+ (A is
 the Lebesgue measure on the real line R). The lower density d is defined in a
 similar manner. When these two values are the same, the common value d(A, x)
 is the density of A at x. The upper symmetric derivative of F at x is F* (x) =
 limsup(F(x + h) - F(x - h))/2h as h - ► 0+. The lower symmetric derivative of F at
 xi Ef(x), is defined similarly. When these two coincide, the common value Fs(x)
 is the symmetric derivative of F at x. The lower approximate symmetric derivative
 of F at x, Fļp(x), is the least upper bound of the collection of a such that the
 set >l(a) = {í : (F(x + t) - F(x - t))/2h < a} has density zero at 0. The upper
 approximate symmetric derivative, F*ap(x), is defined similarly. When F*p(x) =
 F£p(x), the common value F*p(x) is the approximate symmetric derivative of F at
 x.

 In the next proof we will follow some ideas of [M] and [Br], pp. 154-157.

 Lemma. Let F : I0 -* R be a nondecreasing function. Then Fs(x0) = F^p(x 0)
 and Fs(x0) = Fsap(x 0) hold for each xo € Io-

 Proof. Suppose that there exists an xo and a finite a such that Ff(x o) < a <
 F^p(xo). Since F is nondecreasing, Ff(x0) > 0 and so a > 0. Choose e > 0 such
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 that F'(xo) < a - 2e. Then there exists a sequence {An} of positive numbers
 converging to 0 such that

 ( F(x0 + hn) - F(x0 - hn))/2hn <a - 2e

 holds for each n.

 We shall show for each n that the inequality (F(xo+¿) - F(xo~ í))/2ť < a - e is
 valid for all t in {-hn, -hn(l-eļ(a-e)))'J(hn(l-eļ(a-e))i hn). Since the relative
 measure of this set in [- hn, hn] is e/ (a- e) and hn - ► 0 as n - ► oo, it will follow that
 the upper density at zero of the set A(a-e) = {t : (F(xo+t)-F(xo-t))/2t < a-e}
 is at least e/(a - e) > 0. This will imply that F^p(x o) < a - e, a contradiction.

 Let h G {Än}. Then, ( F(xo + h) - F(x o - h))/2h < a - 2e. Put a = (.F(xo +
 h ) + F(: Co - h))/2 and consider the linear functions L and Lo which satisfy L{x o) =
 Lo(xo) = a and have slopes a - e and a - 2e, respectively. Choose x' and x2 such
 that L(x i) = F(x o + h ) and L(x 2) = F(x 0 - h). Then obviously

 xi = x0 + (F(x0 + h) - a) I {a - e) and

 x2 = x0- (a - F(x0 - h))/(a - e).

 Since F is nondecreasing we have

 (*) F(x) ^ F(xq + h) < L(x) for x € (®i,£o + and

 L(x) < F(x 0 - h) < F(x) for x G (xo - h,Xļ).

 To compute the length of intervals [xi,xo + h ] and [xo - h,x 2] observe that

 xo + h - x 1 = h - (F(x0 + h) - a)/(a - e)

 = (h(a - e) - F(x0 + h) + a)/(a - e)

 - (L(x0 + h) - F(x0 + h))/(a - e)

 > ( L(x0 + h) - L0(x 0 + h))/(a - e)

 = he/(a - e).

 Analogously it can be shown x2 - (xo - h) > he ¡{a - e). Thus

 [x0 + h( 1 - e/(a - e)), x0 + h] C [xi, x0 + h ] and

 [x0 - h,x0 - h( 1 - e/(a - e))] C [x0 - h , x2].

 It follows from (*) that (F(xo+t) - F(xo-t))/2t < (L(xo+t) - L(xo-t))/2t = a-e
 when t G (- h, -h( 1 - e/(a - e))) U (ā(1 - e/(a - e)), h), as was to be proved.

 653



 The argument for the upper approximate symmetric derivative and the upper
 symmetric derivative is similar. (If Faap(xo) < a < a + 2e < F"(x 0), we deal with
 t € (- Ä(1 + s/(a + e)),-h) U (h,h(l + e/(a + e))). Then the upper density at
 zero of the set B(a + e) = {ť : (.F(xo + ż) - F(x0 - t))/2t > a + e} is at least
 e/(a + e) > 0 and F'ap(xo) > a + e, a contradiction.)

 Theorem 1. Let F be a nondecreasing function defined on an open interval
 Io. If F has the approximate symmetric derivative at x, then F has the symmetric
 derivative at x and F'(x) = Fļp(: r).

 Proof. If F has the approximate symmetric derivative at x, then F£p(x) =
 F^p(x) = F'ap(x) and the theorem follows from Lemma.

 Theorem 2. Let F be a measurable approximately symmetrically differen-
 tiable function on Io and let G be symmetrically diiferentiable on Io. If F*p(x) <
 G3(x) everywhere on Io, then there exists a symmetrically diiferentiable function
 f : Io - ► R such that f(x) = F(x) a.e. on Io and F£p(x) = f"(x) everywhere on
 Io-

 Proof. Since G is symmetrically diiferentiable on Io, it is symmetrically
 continuous on I0, i.e. lim(G(a:o + h) - G(x0 - h,)) = 0 as h - ► 0 for each x
 in Io. According to the paper [B], G is continuous almost everywhere on Io
 and hence G is measurable. Let H = G - F. Then H is measurable and

 Hļp(x) = G'ap(x) - F¿p(x) > 0 holds everywhere on 70. It follows from Theo-
 rem 2 of [FR] that H is nondecreasing on the set A of all points for which H is
 approximately continuous. Define the function h : /0 - * R in the following way:
 h(x) = H(x) for x G A, h(x) = sup {H(t) : t < x, t G A} for x G /0 - A. The
 function h is obviously nondecreasing. Since H is measurable, A(/0 - A) = 0 and
 A{x : h(x) ^ H(x)} = 0. According to Theorem 1, ha(x) = hlp(x) = Hļp{x) holds
 everywhere on 70. Let / = G-h. Then f(x) = F(x) a.e. on I0 and fs(x) = Fļp(x)
 everywhere on 70.

 Corollary. Let F be a Lebesgue measurable function, approximately symmet-
 rically diiferentiable on I0. If Fļp is locally bounded, then there is a Lebesgue mea-
 surable, symmetrically diiferentiable function f : I0 - » R such that f(x) = F(x)
 a.e. on Io and f"(x) = Fļp{x) everywhere on Io.

 Remark. An approximately symmetrically diiferentiable function need not be
 measurable. Assuming the continuum hypothesis, W. Sierpiński has shown that
 there is a nonmeasurable function f : R -> R with /*p(x) = 0 for every x in R [S,
 Corollaire 4].
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 Theorem 3. The class of all approximate symmetric derivatives of measurable
 functions is closed with respect to the uniform convergence.

 Proof. Let {/n}f°, where /„ : Io -* R, be a sequence of approximate symmetric
 derivatives of measurable functions and let /„ - ► / uniformly. Then there is an
 no > 0 such that | /„ - f' < 1 whenever n > n0. Define gn = fn - /„0 for n > n0.
 Obviously, Itfnl <2 and gn - ► f-fno uniformly. According to the Corollary,
 is a sequence of symmetric derivatives. Since gn - ► g - f - fno uniformly, g is a
 symmetric derivative (see [K]). Hence / = g + /no is an approximate symmetric
 derivative.

 Example. We show that there is an approximate symmetric derivative of
 a measurable function that is not simultaneously a symmetric derivative and an
 approximate derivative.

 Let I0 be an open real interval and xo € Io- Let {an} and {&„} be two sequences
 in Io such that inequalities an < bn < on+i < Xo hold for every n, that an - ► xo
 and J(U(an, &„), x0) = 0. Put cn = |(an + bn) and define a function F : Io - * R
 in the following way: .F(x) = 0 for x ^ U(a„, 6„), F(cn ) = 1 for every n, F(x) =
 (x - an)/(cn - an) for x 6 (an,cn) and F(x) = -(x - bn)/(bn - cn ) for x G
 (cn,bn). Obviously F is Lebesgue measurable and approximately symmetrically
 differentiable on /o. If / = Fļp , then f(x) = 0 for x ^ U[an, 6n] and x = cn, /(x) =
 (cn - an)'1 for x e (an,cn),/(x) = -(&„ - cn)_1 for x G (c„,6n),/(x) = (2(cn -
 an))-1 for x = an and /(x) = - (2(6n - cn))-1 for x = bn. Since every approximate
 derivative has the Darboux property (see [Br]) / is not an approximate derivative.
 We show that / is not a symmetric derivative of measurable function. Suppose
 that there is a measurable function G : Io - ► R such that G' = f. Put H = F - G.
 Then Hļp = Fļp - G3ap = 0, and according to Theorem 2 of [FR] H is constant
 on the set A of all points for which H is approximately continuous. Since H is
 measurable, the set A is of full measure in Io- Without loss of generality we can
 suppose H(x ) = 0 everywhere on A. Hence G(x) = F(x) everywhere on A and
 - oo = Gs(xo) < 7? (xo) = 0, a contradiction.
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