
 Real Analysis Exchange Vol. 17 (1991-92)

 Hrvoje Šikie,  Department of Mathematics, University of Florida, Gaines-
 ville, FL 32611, USA, ( Current address ), and, Department of Mathematics,
 University of Zagreb, 41000 Zagreb, Croatia

 Riemann Integral vs. Lebesgue Integral

 Introduction. What more could one say about this old and basic subject?
 It is probably hard to answer such a question. Still, the purpose of this paper
 is to try to interpret a well-known parallelism:

 Lebesgue integral Riemann integral
 i . :

 countably additive . measure finitely additive measure
 i i

 monotone convergence uniform convergence

 One part of the preceding comparison (the one which deals with conver-
 gence) is expressed in the following two theorems, which are certainly familiar
 to the reader:

 Theorem A. If a sequence {/„} of Riemann integrable functions on a com-
 pact interval [a, b] converges uniformly to the function / , then / is Riemann
 integrable and

 lim //„=//.
 n-+ oo J' J

 Theorem B. If a nondecreasing sequence {/n} of nonnegative Lebesgue
 integrable functions converges pointwise to the function / and lim / /„ is
 finite, then / is Lebesgue integrable and

 JiS. ļf» = ļf-
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 But, if we consider the definitions of these two integrals then this paral-
 lelism is somewhat obscured. To define the Lebesgue integral, we can start
 with a countably additive measure, define the integral for simple functions,
 and then extend it, by monotone convergence, to integrable functions. On
 the other hand, if we start with a finitely additive measure, then we have
 to deal with the sets of Lebesgue measure zero, and the procedure does not
 look so elegant and simple any more.

 Therefore, the following question is "natural" to ask:
 Is it possible to follow the pattern of the definition of the Lebesgue inte-

 gral, but to use a finitely additive measure instead of a countably additive
 measure, and uniform convergence instead of monotone convergence, to ob-
 tain the Riemann integral so that the set of integrable functions is exactly
 the set of all Riemann integrable functions ?

 The answer is yes. In the first section we will explain the defining pro-
 cedure precisely (which is rather obvious, once we know what we want; we
 mention it for the sake of precision and completeness). In the second para-
 graph we will show that the Riemann integral can be obtained in that way.

 While presenting this paper to Prof. Murali Rao, and discussing it with
 him, the second proof of the same theorem emerged. Since it gives additional
 insight into Riemann integrable functions, it will be presented in the third
 section. The reader will notice that the second proof is shorter and more
 elegant than the first one. It is also logically independent of the first proof.
 However the second proof illuminates only one side of the problem, namely,
 the description of the inverse image of an interval with respect to the Riemann
 integrable function. For a deeper understanding it is important to know if
 we can control the behaviour of a Riemann integrable function on the set of
 discontinuity points. The first proof emphasizes this aspect of the problem. I
 would like to take this opportunity to thank Prof. Murali Rao for the fruitful
 discussion, and for his generosity in allowing me to present the result of that
 discussion in this paper.

 Remark 1 The definition of the Riemann integral given in this paper is, of
 course, not intended for a person not so familiar with the Riemann integral.
 □
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 l.The Definition of Integral. Let fi be a nonempty set and A an algebra
 on fi, i.e., A is a family of subsets of fi which contains fi, and is closed under
 complementation and finite unions.

 Let B = B(fi) be the set of all bounded real-valued functions on fi.
 Notice that we do not require any other conditions (i.e., no measurability,
 continuity, etc.), except boundedness, for elements in B. Together with the
 norm || / ||= sup{| /(o>) | : weiì} B is a Banach space, and convergence in
 norm |j || is exactly uniform convergence.

 As usual, we will denote the set of natural numbers by N, the set of
 rational numbers by Q, and the set of real numbers by R.

 Let S = S(fi, A) denote the set of all .4-simple functions on fi, i.e., the
 set of all / : fi - ► R such that there exist ne N, <*i,...,ane R, and
 j4ļ, . . . , An e A mutually disjoint, and such that

 n

 /=£««* ,
 ¿=1

 where XAf is the characteristic function of the set A¿. Since A is an algebra,
 it follows that S is a vector space and, in fact, it is a subspace of B. Let us
 denote by I = I(fi, A) the closure of S in (B, || ||). Then (I, || ||) is a Banach
 space and S is a dense subspace of I.

 Let ļi be a finite, finitely additive measure on (fi, A), i.e., fi : A - ► R
 is such that, for every At A , 0 < fi(A) < /x(fi) < +oo and

 '«=i / ,=i

 whenever Ai t A are mutually disjoint.
 Let us define the integral with respect to ļi . We define it first on the

 set of simple functions. If / eS then there exist ne N, ai,...,aneR, and
 Ai, ... ,An e A mutually disjoint such that / = 53£=i aiXAi • For such / we
 define the integral of / by

 Int(/) = • (1)
 i=i

 It is now standard to show that Int : S - * R is a well-defined linear func-
 tional on S, and that moreover Int has the following properties:

 (a) (V a, ß eR) (V /, g eS) Int(a/ + ßg) = alnt(/) + /?Int(ý)
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 (6) (VAfcA) Int(xx) =

 W (V/,9<S, f<g) Int(/) < Int(ťř)

 (á) (V/íS) |Int(/)| < M$í) • ll/ll ■
 It follows, since /x(íí) is finite, that Int is a bounded, positive, linear (and
 therefore also continuous) functional on the normed space (S, || ||) . Since
 S is dense in I, Int can be uniquely (by continuity) extended to I. By this
 extension we obtain Int : I - * R, a bounded, positive, linear functional on
 the Banach space (I, || ||), which satisfies all the properties (a), (6), (c), and
 (d), with I instead of S everywhere. It also satisfies the property

 (e) if/nM/, {/„} ÇI, feB =¡> fe land

 Int(/„) Int(/) .

 Definition. We say that / : 0 - > R is fi - integrable if / e I. The /¿-integral
 of /, which we denote by / f dpi, is defined to be Int(/).

 Remark 2 Notice that the /¿-integral is defined exactly in the way requested
 in the introduction. We defined it first for .4-simple functions and then
 extended it, by uniform convergence, to the general case.G

 One can think that the "natural" choice for the algebra A would be

 J = {AC [a, 6] I A is the finite disjoint union of 1 - intervals} (2)

 where by 1 -interval we mean any open, closed, or half-open subinterval of
 [a, 6]. Certainly, J is an algebra, and every J -simple function is Riemann in-
 tegrable. Hence, by Theorem A., every /el([a, 6], J) is Riemann integrable,
 and I([a, b], J) contains all continuous functions. But, does it contain all the
 Riemann integrable functions? The following example shows that the answer
 is no. In the second section we will show which algebra does satisfy all the
 requirements.

 Example 1 Let C denote the Cantor ternary set in [0,1]. Take h to be
 the characteristic function of C. Then h is continuous at every point in the
 complement of C, since C is closed. Hence, h is Riemann integrable, since
 the Lebesgue measure of C is zero. Suppose now that h el([0, 1], J). Then
 there exists / c S([0, 1], J) such that || / - h || < 1/4. Since / is an ,7-simple
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 function, there exists a 1-interval A on which / is constant, say a, and such
 that A contains at least two points in C. In particular, the interior of A must
 be nonempty (otherwise A would be a 1-interval of the form [x,x]). But then
 A must intersect also the complement of C. Therefore, |or - 0| < 1/4 and
 |a - 1| < 1/4 which is not possible. Thus h is not in I([0, 1],«7) . O

 2. Riemann Integral as //-integral. Let us show that we can interpret
 the standard Riemann integral as a ¿¿-integral. Let ft = [a, 6] be a closed
 interval, where a,òeR, a < b. We will denote by int(A), Cl(A), Fr(A ) =
 Cl(A) H Cl(Ac), the interior, the closure, and the frontier of the set A, re-
 spectively. For any function f : [a, b]-* R , we will denote by D(f) the set of
 discontinuity points of /, and by C(/) its complement, the set of the points
 of continuity. Recall that, for every A Ç [a, 6],

 D(xa) = Fr(A) . (3)

 Our choice of an algebra on [a, 6] is T defined by

 J- = {A Ç [a, 6] I A is Lebesgue measurable and A (Fr(A)) = 0} (4)

 where A is Lebesgue measure.
 The facts that Lebesgue measurable sets form a «r-algebra, and that

 fr(0) = 0, Fr(A) = Fr(Ac), Fr(A U B) Ç Fr(A) U Fr(B), imply that
 T is an algebra of subsets of [a, 6]. Notice that J Ç T, J ^ T, where J is
 defined by (2). Notice also that one- point sets are in T, but the set Q fl [a, 6]
 is not in T. Therefore, J- is not a <7-algebra. The following simple theorem
 better explains the reason why we took T into consideration.

 Theorem 1 A real function f on [a, b] assuming only finitely many values
 (and therefore bounded) is Riemann integrable if and only if f eS([a, 6], J-).

 Proof. If / e S([a, 6], J-) then, by (3) and (4), it is a linear combination of
 Riemann integrable functions. Therefore, it is Riemann integrable, too.
 If / is a finitely valued Riemann integrable function, then there exists a

 set of different nonzero real numbers {ax, . . . ,an} such that / = aiXAn
 where Ai = /_1({a¿}). Let us denote /-1({0}) by A0. Since every Riemann
 integrable function is Lebesgue integrable, it follows that Ao , A' , . . . , An are
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 Lebesgue measurable. Also, since the interval [a, 6] is equal to the disjoint
 union Ao U A' U . . . U An , and

 W) = Û ™t{Ai) ,
 «= 0

 it follows that

 DU) = ń Ci(X¡) = Ci(Ai) n If) Ci(AJ)] =
 1=0 t=l

 = Cl{Ax U ... U An) D [p] Cl(A<¡)] = LJ[ Cl(Ai) n Cl{A¡)] = Û Fr(Ai) ■
 »=1 t=i ¿=1

 Hence Á(D(/)) = 0 implies that A(Fr(A,)) = 0, for every i = l,...,n .
 Thus/eS([a,6],^).

 Q.E.D.

 Remark 3 One may ask whether it is possible to replace T by another
 algebra A on [a, 6] which yields the following parallel with the Lebesgue
 integral.
 (i) {x : f(x) > c} e A, for every Riemann integrable /, and for every real c,
 and

 (ii) xa is Riemann integrable, for every A in A.
 The well-known example of "the denominator function" d (which is Riemann
 integrable) defined by

 „ v I 1 In if X = m/n and gr. com. divisor (m,n) = 1
 ^ „ v = 10 1 otherwise if X = m/n and gr. com. divisor (m,n) = 1 <5>

 shows that in that case Q H [a, 6] = {x : d(x) > 0} must be in A. But it
 is not possible, since XQn[a,6] is not Riemann integrable. Hence, we can not
 satisfy (i) and (ii), which shows that T gives the best description of simple
 Riemann integrable functions.
 More detailed analysis of the inverse images of Riemann integrable functions
 will be given in the third paragraphs

 Let us proceed now to the main result of this paper. In the following text we
 will denote by Int the //-integral, where 'i is the restriction of the Lebesgue
 measure A to ([a, b],P).
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 Theorem 2 The function f : [a, b] - ► R is Riemann integrable if and only
 iffe I([a, 6], T), and, in this case,

 f f(x)dx = Int(/) .
 Ja

 Proof. If /el([a, b],F), then there is a sequence of simple functions {/„} Ç
 S([a, 6],^"), which converges to / uniformly. By Theorem 1., every /„ is a
 Riemann integrable function and, by the definition of Int,

 [ fn(x)dx = Int(/„) . Ja

 Now, using Theorem A. and property (e) of Int, we obtain that / is Riemann
 integrable and that the desired equality of integrals is correct.
 Therefore, it remains only to prove that every Riemann integrable function
 / : [a, 6] - * R belongs to

 If / is Riemann integrable, then A (D(f)) = 0 and there exists R > 0 such
 that |/(íc)| < R, for every x in [a, 6]. In particular, C(f) is dense in [a, 6].
 Let e > 0 be a positive real number. We would like to prove that there exists
 g e S([a, 6], T) such that

 ''f-9''<e .

 For every xeC(f) there exists 6X > 0 such that |x - y' < 8X implies |/(x) -
 f(y) I < e/3. Consider now two sets defined by

 0e= (J (X ~ X + an(l = ' (6)
 xtC(J)

 O e is an open, dense set and Ke is a compact set of Lebesgue measure zero.
 Hence Oe, Kc t!F, since Fr(Oe ) = Fr(Ke) = Ke. In particular, the functions

 /1 = / • Xot and f2 = / • Xk. (7)

 are Riemann integrable and f - /1 + /2. Therefore it is enough to approxi-
 mate /1 and /2 by ^"-simple functions.
 Consider /2 first. We partition the interval [- R, R] into disjoint subin-
 tervals Bq - [ - i2, - R c/3], Bļ = ( - R -f ê/3, - R -|- £2/3] , . . . , Bi¡ =
 (- R + ek/3, /2], where k is the smallest positive integer such that ( k +
 l)fi/3 > 2 R. For every i = 0,1,..., £ , we define A¡ = . Then
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 the sets Ai are Lebesgue measurable, since /2 is Riemann (and therefore
 Lebesgue) integrable. There is exactly one ¿0 c {0, 1, . . • , k} such that 0 e ¿?¿0.
 Hence, Ai Ç Ke and Fr(Ai) Ç Ke, for every i / ¿o- It shows that Ai e F, for
 every i / io. Then all A¡ are in T , since they form a partition of the interval
 [a, b]. It follows then that the function <72 defined by

 92 = ^2(-R + "õ") ' XA i (8)
 t=0 ô

 belongs to S([a, 6],jF) and, by the definition of gļ, that

 • (9)

 Consider /1. Since [a, 6] is a separable metric space there exists a se-
 quence {xn} Ç C(f) such that Oc = U^Li On , where On = (xn - 6Xn , a:n+
 -VSXn)tJ Ç T, for every n > 1. We define inductively W' = 0' and
 Wn+i = On+i'(Oi U ... U On), a disjoint family of sets in J Ç T (since these
 are algebras), such that its union is Oe. We define the function hi by

 OO

 hl = Y2 Mxn) • Xwn ' (10)
 n=l

 Notice that A (int(Wn)) = A(W/n), since every Wn is the finite disjoint union
 of 1-intervals. Then the computation

 b - a = A (O.) = £ A(Wn) = £ A(int(Wn)) < A (0(h))
 n= 1 n=l

 shows that '(D(hi)) = 0. Together with the fact that hi is bounded, it
 implies that hi is Riemann integrable and

 11/. -a. u <5 ■ (u)
 The function hi is countably valued, but need not be simple. There exist,
 since the WVs are disjoint, a sequence {V^} of mutually disjoint 1-intervals
 whose union is equal to Oe, and a sequence {an} of real numbers, such that

 OO

 Ä1 = 5Z «» ■ Xvn .
 71=1
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 Let us denote the endpoints of Vn by cn and dn, where cn < dn. Then
 b - a = Y^=i(dn - cn) shows that G = U^Li(crn^n) Q Oe is an open, dense
 set such that Fr(G ) = Gc and A(GC) = 0. Notice also that Gc contains all
 the points cn and dn, since ( cn,dn ) Ç Vn are mutually disjoint. It follows
 that

 A[C/({cn: n> l}U{dn: n> 1})] = 0 . (12)

 For every 5" Ç N we define = (JieS Vi. Then every Vs is Lebesgue mea-
 surable and Vģ = V5C U Kc. The computation

 Fr(Vs) = Cl{Vs ) n [Cl(IQ U Cl(VSc)] =

 = [Cl(Vs) n Cl(IQ] U [CĶVs) n Cł(VSc)] Ç

 Ç Ke u C/(V5)'(U(có<*.)) Q KeöCl({cn: n>l}U{dn: n>l})
 shows, together with (12), that

 VstT , for every S Ç N . (13)

 We consider now the same partition {#,} of the interval [- R, iž], as we did
 before. For every i = 0,1,..., k , we define 5, = {m e N | amt Bi }. Then

 = hļ1(Bi) , and (13) implies that the function

 9i=T,(-R+^)-Xvs. 0 (14) •=o 0

 belongs to S([a,6],^7). The definition (14) implies that

 II 0i - ¿i II < I • (15)
 Finally, we combine (7), (9), (11), and (15) to obtain

 II / - (si + ft) II < ll/.-iill + IIA-ftll < x + ! = £ ' (16)

 Since e > 0 was arbitrary, it follows that /el([a, 6], P).
 Q.E.D.
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 3. More on Riemann Integrable Functions. The proof of Theorem 2.
 is so lengthy because, for a Riemann integrable function / : [a, b] - > R and
 a 1-interval B C R with endpoints c and d, f~1(B) need not belong to the
 algebra T. Still, another way of analyzing this problem is possible, which
 gives more information on the sets of the form

 Consider a point xc C(f) fl Fr(f~1(B)) = C(f) n C/(/-1(.B)) H
 D Cl(f~1(Bc)). Then there exist two sequences {yn} Ç f_1(B) and {zn} Ç
 f~1(Bc ) , such that yn -* x and zn - ► x. Since xeC(f) , it follows that
 /(yn) -» f(x) and f(zn) -► f(x) . But f(yn)eB and f(zn)eBc, and B being
 a 1-interval, imply that f(x) = c or f(x) = d. This shows that, for every
 1-interval B Ç R, with endpoints c and d, and for every Riemann integrable
 function / : [a, 6] - * R

 Fr(f-'B)) Ç D(f) U /-'({e}) U /^({d}) . (17)

 Thus, it follows that (A[/-1({c})] = A[/-1({d})] = 0 = ^ f~l{B)eT) , since
 A (D(f)) = 0. Of course, the example of "the denominator function" d shows
 that A[/-1({c})] can be strictly positive. But still, if it happens that the set
 M, defined by

 M = {ceR I A[/-1({c})] > 0} , (18)
 is "small", then we can prove Theorem 2. in a simpler way.

 More precisely, if A (M) = 0, then, for every e > 0, there is a partition
 t0 = -R < < . . . < tn = R of the interval [- R, R] (for the notation see
 the proof of Theorem 2), such that ť, - i < e, and such that U e Mc, for all
 1. Then it follows, by (17), that all the sets of the form /-1((ť,_i,ť,]) belong
 to T. We define the function g in S([a, 6], T) simply by

 9 = to- Xz-Mt'o,«!]) + *i * X/-1«*!,«*]) +

 Obviously II f-g || < e , which would then complete the proof of the Theorem
 2.

 The question is now, is the set M "small" enough. The following theorem
 shows that even more is true, i.e., that M is at most countable. The example
 after the theorem shows that M can be infinite. These two facts characterize

 M completely, and with that we will finish this paper.

 Theorem 3 Iff : [a, 6] - » R is Riemann integrable, then the set M, defined
 by (18), is at most countable.
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 Proof. Notice that M = U^Lx Mn , where

 = {ccR I A[/-1({c})] > - } . (19)
 n

 We claim that each Mn is finite. If Mn would be infinite then the inter-
 val [a, 6] would contain infinitely many sets of the form /-1({c}), and each
 of them has the Lebesgue measure bigger than 1/n. But, if c ^ d then
 /-1((c}) rï /-1({^}) = which implies that A[a,6] = +00. This is an obvi-
 ous contradiction.

 Q.E.D.

 Example 2 Let d be "the denominator function" defined by (5), and let
 {&„} be a strictly decreasing sequence in ( a,b ) which converges to a. We
 denote 6 by 60, and define / by

 f(x) = d(x) + - for X e (bn, 6„_i] and /(a) = 0 . (20)
 Th

 Then / : [a, 6] - ► [0, 2] and D(f) Ç (Qfl [a, 6]) U {a} U {6n : n > 0 }, which
 implies A (D(f)) = 0. Hence, / is Riemann integrable. Also, for every n > 1,

 n

 which shows that M is infinite.O

 Received July 22, 1991
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