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 THE PEANO CURVE AND
 J- APPRO MIMATE DIFFERENTIABILITY

 1 Preliminaries

 A function /:R - ► R is density continuous ( I-density continuous , deep-I-
 density continuous ) at the point x if it is continuous at x when the density
 topology (X-density topology, deep- X- density topology) is used on both the
 domain and the range [2, 3, 4, 10]. In [4] it is proved that the first coordinate
 of the classical Peano area-filling curve is nowhere approximately differen-
 tiate, even though it is continuous and density continuous. In this paper
 we generalize this result by proving in Section 3 that the same function is
 also X-density and deep-X-density continuous, even though it is nowhere X-
 approximately differentiable. To prove this it is shown that a point a: is a
 deep-X-density point of the Baire set E if, and only if, x is an X-density point
 of the unique regular open set E such that the symmetric difference EAĚ is
 of the first category.

 In Section 4 we give an example of a bounded X-approximately continuous
 function that is not a derivative.

 The notation used throughout this paper is standard. In particular, R
 stands for the set of real numbers and N = {1,2,3,. . .}. For A, B C M and
 d G R the complement of A is denoted by Ac, the symmetric difference of A
 and B is denoted by AAB = (A (J B) ' (A D B ), while B - d = {x - d G
 R: x G B} and dB = {dx G R: x G B}. The symbol B stands for the family
 of subsets of R which have the Baire property and X denotes the ideal of
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 first category subsets of R. A statement about a subset of R is true X-a.e.
 if the set on which it fails to be true is in X. An open set E C R is regular
 if E = int (cl (i?)). For a set E G B we denote by E the only regular open
 set A for which E¿'A G X. The Lebesgue measure of a measurable set A is
 denoted by m(A).

 If A G B, then 0 is an T-density point of A if for every increasing sequence

 {"mJmeN of natural numbers there exists a subsequence {nmp}p€N such that

 p1łiS> ^impJ4n(-i,i) = X-a.e.,

 or, equivalently, that the set

 lim inf nmpA = (J fì n™PA
 P_>0° 9€Np>9

 is residual in (-1,1). We say that a point a is an X-density point of A G B
 if 0 is an X-density point of A - a. The set of all X-density points of A G B
 is denoted by <frj(A). It is not difficult to see that v4A$j(v4) G X for every
 A G B [10, Theorem 3] and that

 $i{A) = (B) for every A,Bç.B such that AAB G X. (1)

 The family of sets

 Tx = {A€B:AC*I(A)}

 forms a topology on R called the X-density topology [9, 10].
 A point a G R is a deep-X -density point [10] of an A G B if there exists a

 closed set F C A U{a} such that a is an X-density point of F. The set of all
 deep-X- density points of A G B is denoted by <&v(A). The family of sets

 Tv = {A <E B: A C $v(A)}

 forms a topology on R called the deep-X -density topology [5, 10].
 A point X is a dispersion (X- dispersion, deep-X -dispersion) point of A if

 a; is a density (X-density, deep-X-density) point of Ac.
 A function /: R - » R is said to be X -approximately differentiate at a point

 X if there exists a number D^/(a:), called the X-approximate derivative of /
 at X, such that for every e > 0, x is an X-density point of some Baire subset
 of

 |ť G R: ~ f^X) G (D^f(x) - e, D^/(i) + e)ļ .
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 (Compare also [6] and [10, Definition 8].)

 We also need the following easy fact [1, Lemma 4].

 Lemma 1. // B = Ungarn M is such that limn-oo bn = 0 and there exists
 a positive number c such that

 bn On
 - T

 àn

 for every ra 6 N, then 0 is not an I-dispersion point of B .

 2 Basic Lemmas

 We start this section with the following lemma.

 Lemma 2. If A is regular open, then $i(A) = $v(A).

 Proof. The inclusion $d(A) C $i(A) is obvious from the definitions.
 To prove the converse inclusion let x € $i(A). For simplicity we assume

 that x = 0. We must show that 0 is a deep-X-density point of A.
 But 0 is an Z-density point of A if, and only if, 0 is an X-dispersion point

 of A°. Without using the full strength of Theorem 1 from [7] it follows that
 0 is an X-density point of A if, and only if,

 for every nonempty interval (a, 6) C (- 1, 1) there exist numbers
 e > 0 and no € N such that for every n > no there is a nonempty
 interval (c, d ) C (a, b) with the properties:

 I d - c'> e and (c, d) fl nAc = 0.

 Notice that in the above it is enough to consider only intervals (a, b) with

 rational endpoints. Moreover, by the regularity of A, cl (^4C) = Ac, and so

 (c, d) H nAc = 0 (c, d) fl nAc = 0

 ■<=>■ - (c, oř) H Ac = 0
 n

 <=> - (c, d) C A.
 n

 Hence, we can conclude that 0 is an X-density point of A if, and only if,
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 (*) for every nonempty interval / = (a, b) C (-1,1) with rational
 endpoints there exists a number £/ > 0 and nj € N such that for
 every n > nj there is a nonempty interval (c, d) C [c, d] C (a, b )
 with the properties:

 'd - c'>ej and - 'c,d'<zA.
 n

 Now we can construct a closed set _E(J{0} C A U{0} which satisfies (★).
 This will finish the proof.

 Let {/jt}fcgN be an enumeration of all nonempty subintervals of (-1,1)
 with rational endpoints and assume that n¡k > k for every k G N. For k € N,
 let Ek be a union of intervals ^[cn, dn] for n > n/k, where [cn , dn] is a subset
 of Ik satisfying (★); i.e., such that

 I dn cnļ > £jk and [cn,^n] C A,
 n

 Let

 E={jEk.
 fce N

 Notice that

 tiķ n¡k le k

 so that Ek'(-^,^) intersects only finitely many closed intervals forming Ek.
 In particular,

 £'(-ļ>ļ) = U£.'(-ļ,i),
 i<k

 where the right-hand side intersects only finitely many closed intervals from
 the collection whose union forms E. This implies that £(J{0} is closed. This
 finishes the proof of Lemma 2.

 Lemma 3. Let /:R - * R be such that f~l(E) € I for every E € X. Then
 f is deep-X- density continuous if, and only if, f is I-density continuous.

 Proof. It is known that every X-density continuous function is deep-J-
 density continuous [3, Theorem 4.1(iv)]. To prove the converse implication
 choose a deep-X-density continuous function / satisfying the assumption and
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 let f(x) be an J-density point of E G B with f(x) € E. Then, by (1), f(x )
 is an J-density point of E and, by the regularity of E and Lemma 2, f(x)
 is also a deep- J-density point of E. Thus, x is a deep- J-density point of
 f~1(E). Moreover, by the assumption,

 r1(Ě)Af-1(E) = r'ĚAE) e J.

 So, by (1), x is an J-density point of f~1(E).

 We will need also the following characterization of a deep- J-density point.

 Lemma 4. The following conditions are equivalent:

 (i) x is a deep-T- density point of A;

 (ii) given s € (0, 1), there exists Ds> 0 and Rs 6 (0, 1) such that whenever
 0 < D < Da and (y - 8,y + 8) C (x - D,x + D)' {x} with 28/ D > s,
 then there is an interval J C (y - 8, y + <5) fi A with m(J)/28 > Rs.

 Proof. Without any loss of generality it may be assumed that x = 0. In
 [11, Theorem (5)] Zajíček proves that 0 is an J-density point of A if, and
 only if, (ii) is satisfied, where the inclusion J C (y - 8, y + 8) fi A is replaced
 by

 [(y-8,y + 8)f)A]' Je J. (2)

 But we can assume that A is open, since there is a closed set F C AU{0} for
 which 0 is an J-density point and then, by Lemma 2, 0 is also an J-density
 point of F = int (F). But then (2) implies that J C {y - 8, y + 6) fi A. Lemma
 4 is proved.

 3 Main Theorem

 Theorem 1. There exists a continuous, density continuous and T-density
 continuous function f which is nowhere approximately and J -approximately
 differentiate.

 Proof. We begin by defining a version of the classical Peano area-filling
 curve P : [0, 1] - ► [0, 1] x [0, 1]. To do this, a sequence of continuous paths Pn ś.
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 [0, 1] - ► [0, 1] X [0, 1] for n = 0, 1, . . are defined which converge uniformly
 to P. This definition is facilitated by the following basic construction, which
 will be referred to as BCP.

 Given a square [a, b] x [c, d] with one of its diagonals a parametrized
 constant speed path A : [a, ß] - ► [a, 6] x [c, d] , we construct a new path
 Ai : [a, ß] - ► [a,b] x [c, d' as shown in Figure 1, where the speed of the new
 path is constant and three times the speed of A.

 d'

 / BCP 'C

 a b a b

 Figure 1: Basic construction BCP.

 Using symmetries, BCP can be applied to either of the two diagonals of
 any square with either path orientation. Also, if ||G||oo = supx |G(x)|, then
 it is clear that

 II A - A'lloo < y/(b-ay + (d-cy (3)
 for every A' : [a,ß] - > [a, 6] x [c, d].

 To construct the Peano curve, let Po(t) = (t, t) and define Px by applying
 BCP to Po- The image of Pi consists of a diagonal from each of the nine
 squares

 'i » + il rj j + iļ . . _
 'i .3' 3 J L3' 3 iļ J hJ . . _ ~

 (See Figure 1 with a = c = 0 and b = d = 1.) Construct P2 by applying
 BCP to each of the diagonals of these squares as shown in Figure 2.

 This process can be continued inductively in the obvious way to form the
 sequence Pn, n € N. From (3) it follows that

 ''Pn - PmWoo < x/23"
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 Figure 2: Construction of Pļ.

 This shows that Pn converges uniformly to P. It is also easy to see that the
 image of P is a dense, compact subset of [0, 1] x [0, 1], so P is an area-filling
 curve.

 If P = (PhPì), where pi : [0,1] - » [0,1], i = 1,2 are the coordinate
 functions for P, then we claim / = p' is a function satisfying the conditions
 of Theorem 1.

 To see this, it might be helpful to see how / can be defined directly as
 a uniformly convergent sequence of continuous functions /„ : [0,1] - ► [0,1],
 where each fn is the first coordinate of Pn. The first coordinate of BCP can
 be represented by the construction shown in Figure 3. A similar construction
 can be done with either diagonal via an obvious reflection. This construction
 is denoted BCX.

 Notice that Figure 3(B) also represents fi : [0,1] - » [0,1], if we take
 a = a = 0 and b = ß = 1. To form /2 it is enough to apply BCX to each
 linear segment of /1 . Then, apply BCX to each linear segment of /2 to arrive
 at /3, etc.

 Evidently, / is continuous, as the first coordinate of the continuous func-
 tion P. Also, as proved in [4], it is density continuous and nowhere approxi-
 mately differentiable.

 In the rest of the proof, we will need the following easy observations.
 The function P is self-similar in the sense that for every n € N and every

 i = 0,1,..., 9" - 1 , there exist l(i), r(i) € {0, 1, . . . ,3n - 1} such that the
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 b i

 / BCX j /' j'

 a

 a ß a ß
 A B

 Figure 3: Basic construction BCX.

 n('% » + 'l(t) l{i) + 1 r(z) r(t) + l
 U9n' 9n J/ [ 3n ' 3n J [ 3n ' 3n J '

 and the path followed is a scaled and reflected copy of the entire path of P
 in [0, 1] X [0, 1]. Since / is the first coordinate of P , condition (4) implies
 also that for each integer i € {0,1,..., 9n - 1}, there is an integer l(i) €
 {0, 1, . . . , 3n - 1} such that

 »>

 Also notice the following easy geometrical fact.
 For every t G N, t > 1, and nonempty interval (a, 6) C [0,1] there are

 i,n G N such that

 i i + lļ / , mí/O 1
 K = - ' , Ltn , ' tn J v ' ' - b - - a - - - 2t y '
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 To see this, let n be the smallest natural number such that

 1 /tn < (b - a)/2.

 Thus, 2/tn~1 > ( b-a ) and there exists i such that i/tn £ (a, (6+a)/2). Hence,
 K = [i/tn,(i + 1 )/tn] C (a, b) and m (K)/(b-a) > {l/tn)/(2/tn~1) = 1/2 1.
 This finishes the proof of (6).

 Notice that (5) implies is nowhere dense for every nowhere dense
 set E. So,

 /-1(¿2) € X for every E € X.

 Thus, by Lemma 3, to show that / is X-density continuous it is enough to
 prove that / is deep-X-density continuous.

 Let X G [0, 1] and let A C R ' {/(®)} be a set such that f(x) is a deep-
 X-density point of A. It must be shown that a: is a deep-X-density point of
 /-1(j4). This will be done with the aid of Lemma 4.

 Let s = 1/9* E (0,1). We must find Ds > 0 and R„ G (0,1) such that
 whenever 0 < D < Ds and an interval I C (x - D,x + D) ' {x} with
 m {I) I D > s, then there is an interval J C I Pi f~l(A) with

 > R,- (7) v y
 m (/) v y

 Let s' = s/ 93. Using Lemma 4 with A and /(x), there exists Ds> > 0 and
 Rs> = 1/3' € (0, 1) such that

 • whenever 0 < D' < Ds> and an interval

 rc(f(x)-D',f(x) + D')'{f(x)}

 with m (I')/ D' > s', then there is an interval J' C I' H A with

 m(J')/m(I') > Rs, (8)

 Let D g > 0 be such that

 'f(x) - f(y)' < Ds' for 'x-y'<Da (9)

 and let Rs = l/9'+5. Let 0 < D < Da and choose an interval I C (x - D,x +
 D) ' {a:} with m (I)/D > s. We will find an interval J C I H /_1(A) with
 m(J)/m(/) > Rs.
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 Assume that I C (x,x + D). The other case is similar.
 Using (6), we can find I0 = [i/9n_1, ( j + l)/9n_1] C I such that

 3S * Í «
 Moreover, using (4), it is easy to find I' = [i/9n,(t + l)/9n] C Iq such that
 /(*) t f(h). Thus,

 m(7i) _ 1 m(/0) 1 1 m(7) s _ ,
 D _ 9 D - 9 18 D 93 _ 5 '

 In particular, there exist p = (s')-1 contiguous intervals J1,/2,...,/p of
 length l/9n, one of which is I' and such that x € I1 'JI2'J . . .'JIP.

 Define

 D' = max{|/(x) - /(¿/9n)|, |/(x) - f((i + l)/9n)|} > 0

 and I' = f(h). By (9) we see that D' < Ds, and, by (4), f(i/ 9n) and
 /((¿+l)/9n) are the end points of /' so that /' C [f{x)-D',f(x)+D']'{f(x)}.
 Moreover, since x, iļ 9n, ( i + l)/9n G I1 (J I2 U . . . U Ip then, by (5), we have

 D'<m(f ^(J ''j j < ¿m(/C')) =
 Hence,

 > m(7') = „-i = 5'.
 D' pm(/')

 Thus, by (8), there is an interval J' C I' fi A such that m(J')/m(I') > Rs>.
 Using (6), we can find an interval

 = [io/3m,(io+ l)/3m] C J'

 such that m(Ji)/m(J') > 1/6 > 1/9. Hence,

 m(jp _ m (JQ 1 1
 m (/(/,)) _ m(/') m(J') m(J') ^ 9 *' 3'+2

 and J[ = [io/3m,(io + l)/3m] C f(h) = + l)/9n]). But now
 condition (4) implies easily that there exists an interval

 J = V/9m,U + l)/9m] C /, = (¡/9", (i + 1)/9"1
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 such that f(J) = J[ and

 mU) ( 1 y = 1
 m{h) V3'+2/ 9'+2'

 Hence, by (10),

 m(J) > m (J) = 1 m(J) I
 m (I) ~ 18m(/0) 918m(/i) 939'+2 *'

 Condition (7) is proved. This finishes the proof that / is Z-density continu-
 ous.

 To see that / is not Z-approximately differentiable at a point x 6 [0, 1]
 let us do the following construction for each n € N. Choose i G N such that
 x € [i/ 9n, ( i + l)/9n]. Then, by (5), f([i/ 9n, ( i + l)/9n]) = [j/ 3n, ( j + l)/3n]
 for some j € N. It is also not difficult to see that condition (4) implies that

 r /r 9 i 9¿ + n' /r9¿ + 8 9¿ + 9i'i

 V 9"+! i) ł/ U 9"+! ' 9"+x ')i
 = f '1L 3J + 1] [3i + 2 3j + 31 1

 1 L3n+1 ' 3n+1 J ' L 3n+1 ' 3n+1 J J '

 This implies, in particular, that for every y £ [9¿/9n+1, (9¿ + l)/9n+1] and
 y' G [(9i + 8)/9n+1, (9 i + 9)/9n+1] we have

 'f(y)-f(y')' > 1/3n+1 _ ļ
 |y - y'' 1/9"

 Hence, an easy geometrical argument implies that for one of the intervals
 [9¿/9n+1,(9¿ + l)/9n+1] or [(9i + 8)/9n+1, (9 i + 9)/9n+1], which we denote by
 [an, bn], we have x g [an, 6„] and

 'f(y) -/(®)| > ^ on- i r ^ r L 1
 I y - A

 But, by Lemma 1, x is not an Z- dispersion point of Uneiv[arn ^n]- Thus, for
 every Z-density open set U containing x, for every e > 0 and n <E N there is
 an y € (x - e, x + e) D U fi Um>nK) bm' for which

 l/(y) -/(«)! ^ on
 'y-x' ~

 This implies that / is not Z-approximately differentiable. Also notice that
 the construction of the intervals [a„, 6„] given above also implies that / is
 not approximately differentiable. This finishes the proof of Theorem 1.
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 4 Derivatives and J-approximate continuity
 In this section we show that the well-known fact that every bounded ap-
 proximately countinuous function is a derivative is not true for the bounded
 J-approximately continuous functions.

 Example 1 . There exists a bounded X-density continuous function which
 is not a derivative.

 Proof. Let P C (0, 1] be a nowhere dense closed set with positive measure.
 Choose a sequence {n^gN of natural numbers satisfying lim^oo rik/n^i =
 0 and define

 A = (J ^p-
 Jt€N

 Then, by [3, Lemma 2.4], 0 is a deep-X- dispersion point of A. Hence, there
 exists a closed set 2?|J{0} C Ac such that 0 is an Z-density point of B.
 Moreover, it can be assumed that

 B= (J [afc,&fc](J[cjfc,djfc],
 fceN

 where a* < 6* < a*+i < 0 < djt+i < cjt < d* [5, 8].
 On the other hand, for all k € N,

 m (B' n (0, !/„„)) £ m(A O (ū, l/nt)) > > ^
 1/rik l/nk

 so 0 is not a dispersion point of Bc.
 Define the function / on A (J B by

 -, . / 1 X € A
 /W -, . = '0 ,£ B

 and extend / on elsewhere in such a way that it is piecewise linear on (0, oo)
 and bounded by 1. Since 0 is an J-dispersion point of i?c, it is apparent that
 / is X-density continuous. On the other hand, / cannot be a derivative. To
 see this, suppose F is any primitive function for / and define

 G(*) = J'f. JO JO
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 Since / is continuous on R' {0}, we see that F - G must be constant on
 both (- oo, 0) and (0,oo). Since both F and G are continuous, this implies
 that F - G is constant on R and therefore G is differentiate on R. But, this
 is impossible since, by (11),

 D~G( 0) = 0 < m(P)

 *-► oo 1/nfc

 < lim sup ļnk ^ <j(0).
 k - ►oo 1 /Tlk
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