Hung Hwan Lee, and In Soo Back, Kyungpook National University, Taegu 702–701, KOREA

ON *d***-MEASURE AND** *d***-DIMENSION**

1. Introduction

Let \mathcal{G} be the graph of the Weierstrass function $W_{\alpha}(t) = \sum_{n=0}^{\infty} b^{-n\alpha} \cos b^n t$ with b an integer such that $b \ge 2$ and with $0 < \alpha < 1$. It is well-known that the Hausdorff dimension of \mathcal{G} , $HD(\mathcal{G})$, is equal or less than $2 - \alpha$ ([2]). But it has not been proved whether $HD(\mathcal{G})$ is exactly equal to $2 - \alpha$. In 1988, F. Rezakhanlou observed that packing dimension of \mathcal{G} , $PD(\mathcal{G})$, is $2 - \alpha([7])$. In [11], $HD(E) \leq \widehat{Cap}(E) \leq \widehat{\overline{Cap}}(E) = PD(E)$ for $E \subset \mathbf{R}^d$ was shown, where $\widehat{Cap}(\overline{Cap})$ is a dimensional index induced by lower (upper) capacity $Cap(\overline{Cap})$. Naturally we are interested in the value of $\widehat{Cap}(\mathcal{G})$. Investigating \widehat{Cap} , we find that unlike HD or PD, \widehat{Cap} has not been defined in terms of measure, and this can present difficulties in its theoretical development. Hence, in this paper, we define an outer measure, d-measure, whose dimensional index, d-dimension, is equal to Cap. We examine its properties and examples, some of which are related to Hausdorff measure. On the other hand, we show $\widehat{Cap}(\mathcal{G})$ is $2-\alpha$, although d-measure does not attribute directly to find its value. Further we reprove that $PD(\mathcal{G})$ is $2 - \alpha$ by a different method from Rezakhanlou's (cf. [7]), and show that packing dimension of the Kiesswetter's curve is $\frac{3}{2}$ (cf. [1]). Finally we show that $\widehat{Cap}(\mathcal{R}) = PD(\mathcal{R}) = 2 - \alpha$ for the graph \mathcal{R} of the sum of Rademacher function (cf. [8]).

2. Preliminaries

For $\alpha > 0$, we define a pre-measure D^{α} of a bounded set F in $\mathbb{R}^{\mathbf{d}}$ by $D^{\alpha}(F) = \liminf_{r \to 0} N(F, r)r^{\alpha}$, where N(F, r) is the minimum number of closed balls in $\mathbb{R}^{\mathbf{d}}$ with diameter r, needed to cover F. Then $D^{\alpha}(\phi) = 0$, $D^{\alpha}(F) = D^{\alpha}(\overline{F})$ for a bounded set F, and D^{α} is monotone.

Supported in part by TGRC-KOSEF, 1991.

We employ Method I by Munroe to obtain an outer measure d^{α} of $E \subset \mathbf{R}^{\mathbf{d}}$:

$$d^{\alpha}(E) = \inf \{ \sum_{n=1}^{\infty} D^{\alpha}(E_n) : E \subset \bigcup_{n=1}^{\infty} E_n, E_n \text{ are bounded in } \mathbf{R}^d \}.$$

Henceforth, we call d^{α} the α -dimensional *d*-measure.

We define a rarefaction index δ of a bounded set F by

$$\delta(F) = \sup\{lpha > 0 : D^{lpha}(F) = \infty\}$$

= $\inf\{lpha > 0 : D^{lpha}(F) = 0\}.$

Clearly δ is monotone, but not σ -stable in the sense of [11]. As in [11], we define a dimensional index induced by δ , $\hat{\delta}(E) = \inf \{ \sup_n \delta(E_n) : E = \bigcup_{n=1}^{\infty} E_n, E_n$ are bounded $\}$ for any $E \subset \mathbb{R}^d$. Then $\hat{\delta}$ is clearly σ -stable. We recall the lower(upper) capacity $Cap(\overline{Cap})$ of a bounded set F,

$$\underline{Cap}(F) = \liminf_{r \to 0} \frac{\log N(F, r)}{-\log r}$$
$$(\overline{Cap}(F) = \limsup_{r \to 0} \frac{\log N(F, r)}{-\log r}) \text{ (cf. [6])}$$

For the lower(upper) capacity $\underline{Cap}(\overline{Cap})$, we define $\underline{\widehat{Cap}}(\overline{\widehat{Cap}})$ as above. We also define a dimensional index, d-dimension of E, by

$$d - \dim(E) = \sup\{\alpha > 0 : d^{\alpha}(E) = \infty\}$$
$$= \inf\{\alpha > 0 : d^{\alpha}(E) = 0\}.$$

We close this section by listing some notations.

- $\mathcal{H}^{\alpha}(E)$; α -dimensional Hausdorff measure of E.
- $p^{\alpha}(E)$; α -dimensional packing measure of E.
 - |E|; the diameter of E.
 - Γ ; curve (i.e. the image of a continuous injection of a closed interval).
 - $\mathcal{L}(\Gamma)$; the length of a curve Γ .
- $\mathcal{B}(\mathbf{R}^{\mathbf{d}})$; the family of all bounded sets in $\mathbf{R}^{\mathbf{d}}$.

3. Some properties of *d*-measure

We now start to prove the following basic properties of our new outer measure d^{α} .

Theorem 1. d^{α} is Borel regular. That is, for any set $E \subset \mathbb{R}^d$, there exists a Borel set $B \subset \mathbb{R}^d$ such that $E \subset B$ and $d^{\alpha}(E) = d^{\alpha}(B)$.

Proof. Since $N(F,r) = N(\overline{F},r), D^{\alpha}(F) = D^{\alpha}(\overline{F})$. Thus

$$d^{\alpha}(E) = \inf \{ \sum_{n=1}^{\infty} D^{\alpha}(\overline{E}_n) : E \subset \bigcup_{n=1}^{\infty} E_n, E_n \in \mathcal{B}(\mathbf{R}^{\mathbf{d}}) \}.$$

For every integer n > 0, there exists a sequence of bounded sets $\{E_{n,i}\}_{i=1}^{\infty}$ such that $E \subset \bigcup_{i=1}^{\infty} E_{n,i}$ and $\sum_{i=1}^{\infty} D^{\alpha}(E_{n,i}) \leq d^{\alpha}(E) + \frac{1}{n}$. Let $B = \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{\infty} \bigcup_{i=1}^{\infty} \overline{E}_{n,i}$. Then $E \subset B$, and $B \subset \bigcup_{i=1}^{\infty} \overline{E}_{n,i}$ for every n. Therefore $d^{\alpha}(B) \leq \sum_{i=1}^{\infty} D^{\alpha}(\overline{E}_{n,i})$ for every n. Hence $d^{\alpha}(B) \leq \inf_{n} \sum_{i=1}^{\infty} D^{\alpha}(\overline{E}_{n,i}) = d^{\alpha}(E)$. The opposite inequality follows from monotonicity of d^{α} .

Theorem 2. d^{α} is a metric outer measure.

Proof. Plainly we have $d^{\alpha}(A \cup B) \leq d^{\alpha}(A) + d^{\alpha}(B)$ by subadditivity of d^{α} .

Suppose that dist (E, F) > 0 for $E, F \in \mathcal{B}(\mathbb{R}^d)$. Then dist $(E, F) > 2\varepsilon > 0$ for some positive constant ε . Noting $N(E \cup F, \varepsilon) = N(E, \varepsilon) + N(F, \varepsilon)$, we have

$$D^{\alpha}(E \cup F) \ge D^{\alpha}(E) + D^{\alpha}(F).$$

Hence, for A and B with dist (A, B) > 0,

$$d^{\alpha}(A \cup B) = \inf\{\sum D^{\alpha}(E_n) : A \cup B = \bigcup E_n, E_n \in \mathcal{B}(\mathbf{R}^{\mathbf{d}})\}$$

$$\geq \inf\{\sum D^{\alpha}(E_n \cap A) + \sum D^{\alpha}(E_n \cap B) : A \cup B = \bigcup E_n, E_n \in \mathcal{B}(\mathbf{R}^{\mathbf{d}})\}$$

$$\geq \inf\{\sum D^{\alpha}(E_n \cap A) : A \cup B = \bigcup E_n, E_n \in \mathcal{B}(\mathbf{R}^{\mathbf{d}})\}$$

$$+ \inf\{\sum D^{\alpha}(E_n \cap B) : A \cup B = \bigcup E_n, E_n \in \mathcal{B}(\mathbf{R}^{\mathbf{d}})\}$$

$$\geq d^{\alpha}(A) + d^{\alpha}(B).$$

Corollary 3. d^{α} is a regular outer measure.

Proof. It is immediate from Theorems 1 and 2 because the family of all measurable sets of a metric outer measure contains all Borel sets.

Theorem 4. $\mathcal{H}^{\alpha}(E) \leq d^{\alpha}(E)$ for every set E in \mathbb{R}^{d} .

Proof. $\mathcal{H}^{\alpha}(F) \leq D^{\alpha}(F)$ for any $F \in \mathcal{B}(\mathbb{R}^{d})$ from the definitions. By the subadditivity of \mathcal{H}^{α} and the prior fact, we easily obtain the result.

Corollary 5. Suppose that for some α , there are numbers c > 0 and $\delta > 0$ such that $d^{\alpha}(E \cap U) \leq c|U|^{\alpha}$ for all convex sets U with $|U| \leq \delta$. Then $\mathcal{H}^{\alpha}(E) \geq d^{\alpha}(E)/c$. In particular, for $c = 1, \mathcal{H}^{\alpha}(E) = d^{\alpha}(E)$.

Proof. It follows immediately from mass distribution principle 4.2 of [3]. When c = 1, it is obvious from Theorem 4.

Example 6. Let C be the well-known Cantor ternary set. Then we easily see that $d^{\alpha}(C \cap U) \leq D^{\alpha}(C \cap U) \leq |U|^{\alpha}$ for all intervals U, where $\alpha = \log 2/\log 3$. Hence $\mathcal{H}^{\alpha}(C) = d^{\alpha}(C)$ from Corollary 5. (Compare this with Example 10.)

Theorem 7. $D^1(\Gamma) = \mathcal{L}(\Gamma)$ for a curve Γ .

Proof. First, note that Theorem 4 and $d^1(\Gamma) \leq D^1(\Gamma)$ give us $\mathcal{H}^1(\Gamma) \leq D^1(\Gamma)$. Thus $\mathcal{L}(\Gamma) \leq D^1(\Gamma)$ since $\mathcal{H}^1(\Gamma) = \mathcal{L}(\Gamma)$ (Lemma 3.2 of [2]).

Second, suppose that $\mathcal{L}(\Gamma) < \infty$. Then we can dissect Γ into *n*-parts with the same arc length: $\Gamma_1, \Gamma_2, \cdots$, and Γ_n . Let x_i be the midpoint of Γ_i for each $i = 1, 2, \cdots, n$. Then each Γ_i is contained in the closed ball of center x_i with radius $\mathcal{L}(\Gamma)/2n$. Thus $N(\Gamma, \mathcal{L}(\Gamma)/n)\mathcal{L}(\Gamma)/n \leq n(\mathcal{L}(\Gamma)/n) = \mathcal{L}(\Gamma)$. Therefore $\liminf_{n\to\infty} N(\Gamma, \mathcal{L}(\Gamma)/n)\mathcal{L}(\Gamma)/n \leq \mathcal{L}(\Gamma)$. Hence $D^1(\Gamma) \leq \mathcal{L}(\Gamma)$.

Corollary 8. $d^{1}(\Gamma) = \mathcal{L}(\Gamma)$ for a curve Γ .

Remark 9. Noting that a curve Γ is strongly regular (cf. Theorem 6.1 of [10]), we have $\mathcal{L}(\Gamma) = \mathcal{H}^1(\Gamma) = d^1(\Gamma) = D^1(\Gamma) = p^1(\Gamma)$. There are many examples of E such that $0 < \mathcal{H}^{\alpha}(E) = d^{\alpha}(E) < \infty$ for some $\alpha > 0$, and also there are examples of E so that $\mathcal{H}^{\alpha}(E) < d^{\alpha}(E)$ for some E in \mathbb{R}^d . (Corollary 14 in this paper, and [11]).

Example 10. Let C be as in Example 6. Then $\mathcal{H}^{\mathfrak{s}}(C) = d^{\mathfrak{s}}(C) = D^{\mathfrak{s}}(C) = 1$, where $s = \log 2/\log 3$. Clearly $N(C, 3^{-n})(3^{-n})^{\mathfrak{s}} = 2^n 2^{-n} = 1$, implying $D^{\mathfrak{s}}(C) \leq 1$. Noting that $\mathcal{H}^{\mathfrak{s}}(C) = 1$ (Theorem 1.14 of [2]) and $\mathcal{H}^{\mathfrak{s}}(C) \leq d^{\mathfrak{s}}(C)$ (Theorem 4), we obtain the result.

Example 11. Let E be the product of same Cantor-like sets ; $E = \{(x, y); x\}$

 $= \sum_{n=1}^{\infty} \frac{a_n}{4^n}, y = \sum_{n=1}^{\infty} \frac{b_n}{4^n}, \text{ where } a_n, b_n \in \{0,3\}\}.$ It was shown in [5] that $\mathcal{H}^1(E) = 2^{\frac{1}{2}}.$ But $D^1(E) \leq \liminf_{n \to \infty} N(E, 2^{\frac{1}{2}} 4^{-n}) 2^{\frac{1}{2}} 4^{-n} = 2^{\frac{1}{2}}.$ Hence $\mathcal{H}^1(E) = d^1(E) = D^1(E) = 2^{\frac{1}{2}}.$

4. Capacity and *d*-dimension

In this section, we prove $\widehat{Cap} = d - \dim$ by showing $\underline{Cap} = \delta$ (hence $\widehat{Cap} = \hat{\delta}$) and $\hat{\delta} = d - \dim$.

Theorem 12.

$$\delta(F) = \underline{Cap}(F) \text{ for } F \in \mathcal{B}(\mathbf{R}^d)$$

Proof. Suppose that $\underline{Cap}(F) > \delta(F) + \varepsilon$ for some $\varepsilon > 0$. Then there exists $\rho > 0$ such that for any $r \leq \rho$, $\log N(F,r) > \log r^{-[\delta(F)+\varepsilon]}$; i.e. $N(F,r)r^{\delta(F)+\varepsilon} > 1$. Hence $D^{\delta(F)+\varepsilon}(F) \geq 1$, which is a contradiction. Therefore $\underline{Cap}(F) \leq \delta(F) + \varepsilon$ for any $\varepsilon > 0$. Similarly we obtain $\underline{Cap}(F) \geq \delta(F) - \varepsilon$ for any $\varepsilon > 0$.

Theorem 13. $\hat{\delta}(E) = d - \dim(E)$ for any set E in \mathbb{R}^d .

Proof. Suppose that $\hat{\delta}(E) < d - \dim(E)$. Then there exists $\alpha \in (\hat{\delta}(E), d - \dim(E))$. So there is a sequence $\{E_n\}$ of bounded subsets of E such that $\cup E_n = E$ and $\sup_n \delta(E_n) < \alpha$. Thus $D^{\alpha}(E_n) = 0$ for any n, implying $d^{\alpha}(E) = 0$. It is a contradiction. Now, suppose $d - \dim(E) < \hat{\delta}(E)$. Then there is α such that $d - \dim(E) < \alpha < \hat{\delta}(E)$. Thus $d^{\alpha}(E) = 0$. Therefore, there exists a sequence $\{E_n\}$ of bounded subsets of E such that $E = \bigcup_{n=1}^{\infty} E_n$ and $D^{\alpha}(E_n) < \infty$ for every n, hence $\delta(E_n) \leq \alpha$ for every n. Thus $\hat{\delta}(E) \leq \alpha$. It is also a contradiction.

Corollary 14. $\widehat{Cap}(E) = d - \dim(E)$ for any $E \subset \mathbb{R}^d$.

Remark 15. (a) In Example 10, we have seen that $\mathcal{H}^{s}(C) = d^{s}(C) = D^{s}(C) = 1$, where $s = \log 2/\log 3$. Hence, by Theorem 12 and Corollary 14, $\underline{Cap}(C) = \underline{\widehat{Cap}} = \log 2/\log 3$. But there is another way to show $\underline{Cap} = \underline{\widehat{Cap}} = s$ without relying on the fact $\mathcal{H}^{s}(C) = 1$: $d^{s}(C) \leq D^{s}(C) = 1$ and $\overline{d^{t}(C)} = \infty$ for $t < s = \log 2/\log 3$, which can be seen easily from the Baire Category theorem.

(b) Let $f: F \to \mathbb{R}^m$ satisfy a Hölder condition $|f(x) - f(y)| \leq c|x - y|^{\alpha}(x, y \in F)$. Then $d^{\frac{s}{\alpha}}(f(F)) \leq c^{\frac{s}{\alpha}}d^s(F)$ because $D^{\frac{s}{\alpha}}(f(E)) \leq c^{\frac{s}{\alpha}}D^s(E)$ for any bounded subset E of F. Hence $\widehat{Cap}(=d-\dim)$ is invariant under bi-Lipschitz transformations. Besides, one could show many other properties of

Cap using d-measure.

On the other hand, we can obtain d-dim or PD of some sets using capacity.

Theorem 16. Let $f : [0,1] \to \mathbb{R}$, and let G be its graph. Suppose that $0 < \alpha < 1$. If there exist positive constants C_1 and C_2 such that $C_1|J|^{\alpha} \le \sup_{x,y\in J} |f(x) - f(y)| \le C_2 |J|^{\alpha}$ for any interval J in [0,1], then $d - \dim(G) = PD(G) = 2 - \alpha$.

Proof. By Remark 9 of [6], $\underline{Cap}(G) = \overline{Cap}(G) = 2 - \alpha$. If $G = \bigcup_{n=1}^{\infty} E_n$, then $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \overline{E}_n$ since G is a closed set in \mathbb{R}^2 . Then, by the Baire Category theorem, there exists $\overline{E}_m \subset G$ such that $\operatorname{Int}_G(\overline{E}_m) \neq \emptyset$, where $\operatorname{Int}_G(\overline{E}_m)$ is the interior of \overline{E}_m in G. Thus there exists r > 0 such that $B_r(z) \cap G \subset$ $\operatorname{Int}_G(\overline{E}_m)$ for a fixed $z \in \operatorname{Int}_G(\overline{E}_m)$, where $B_r(z)$ is the open disc in \mathbb{R}^2 with center z and radius r. But there exists an interval $J \subset [0,1]$ with very small length such that $\operatorname{Proj}_{X-\operatorname{axis}}(z) \in J$, and $\sup_{x,y \in J} |f(x) - f(y)| \leq C_2 |J|^{\alpha} < \frac{r}{4}$. Thus $\operatorname{Int}_G(\overline{E}_m) \supset \{(a, f(a)) : a \in J\}$. Hence $\underline{Cap}(\operatorname{Int}_G(\overline{E}_m)) \ge 2 - \alpha$. Therefore $\underline{\widehat{Cap}}(G) \ge 2 - \alpha$. By Corollary 14, $d - \dim(G) = \underline{\widehat{Cap}}(G) \ge 2 - \alpha$. Whence $2 - \alpha \leq d - \dim(G) \leq PD(G) = \overline{\widehat{Cap}}(G) \leq \overline{Cap}(G) \leq 2 - \alpha$ [10].

Remark 17. Let f be a continuous function defined on [0, 1] and let G_J be the graph of f over $J \subset [0, 1]$. If f satisfies the property that $\underline{Cap}(G_J) = \beta$ $(\overline{Cap}(G_J) = \beta)$ for any interval $J \subset [0, 1]$ and a fixed $1 < \beta < 2$, then we easily see that $d - \dim(G) = \beta$ ($PD(G) = \beta$) for $G = G_{[0,1]}$ using the Baire Category theorem (c.f., Corollary 11.2 of [3] as an example).

Example 18. Let \mathcal{G} be the graph of the Weirstrass function $W_{\alpha}(t)$. Then $PD(\mathcal{G}) = 2 - \alpha$ since $W_{\alpha}(t)$ satisfies the assumption of Theorem 16 (cf. [4], [6]). Furthermore, $d - \dim(\mathcal{G}) = 2 - \alpha$ in the same manner.

Example 19. Let \mathcal{K} be the Kiesswetter's curve ([1]). Then $d - \dim(\mathcal{K}) = PD(\mathcal{K}) = \frac{3}{2}$. This is because the Kiesswetter function κ satisfies the assumptions of Theorem 16; $|J|^{\frac{1}{2}} \leq \sup_{x,y \in J} |\kappa(x) - \kappa(y)| \leq 3|J|^{\frac{1}{2}}$ for any interval $J \subset [0,1]$. (cf. $HD(\mathcal{K}) = \frac{3}{2}$ in [1])

Example 20. Let $0 < \alpha < 1$ and $f_{\alpha}(x) = \sum 2^{-\alpha i} R_i(x)$, where R_i is the *i*-th Rademacher function and $0 \le x < 1$ ([6], [8]). Let G be its graph. Then it follows essentially from Proposition 2[6] and Theorem 16 that $d - \dim(G) = PD(G) = 2 - \alpha$. We note that $HD(G) < d - \dim(G) = PD(G) = 2 - \alpha$ for PV number 2^{α} ([6]).

REFERENCES

- [1] G.A. Edgar, Kiesswetter's fractal has Hausdorff dimension $\frac{3}{2}$, Real Analysis Exchange, Vol. 14 (1988–1989), 215–223.
- [2] K.J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, 1985).
- [3] K.J. Falconer, Fractal Geometry (John Wiley & Sons Ltd, 1990).
- [4] G.H. Hardy, Weirstrass's nondifferentiable function, Trans. Amer. Math. Soc. 17 (1916), 301-325.
- [5] F.Morgan, Geometric Measure Theory (Academic Press, 1988).
- [6] F. Przytycki and M. Urbanski, On the Hausdorff dimension of some fractal sets, Studia Math (1989), 155-186.
- [7] F. Rezakanlou, The packing measure of the graphs and level sets of certain continuous functions, Math. Proc. Camb. Phil., 104 (1988), 347-360.
- [8] Y. Shiota and T. Sekiguchi, Hausdorff Dimension of Graphs of Some Rademacher Series, Japan J. Appl. Math 7(1990), 121–129.
- [9] S.J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc., 288(1985), 679-699.
- [10] S.J. Taylor and C. Tricot, The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Phil. Soc. 99(1986), 285-296.
- [11] C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc., 91(1982), 57-74. Received April 25, 1991