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 ON THE GROUP GENERATED BY QUASI
 CONTINUOUS FUNCTIONS

 Summary. Let X be a separable metrisable Baire space without isolated
 points. It is proven that every cliquish function f : X -* R is the sum of four
 quasi continuous functions.

 The notion of quasi continuous function was considered in may papers (see, for
 example [5]). Some algebraic structures of the family of quasi continuous functions
 were studied by Z. Grande ( [1] ,[2] ) and E. Stronska ([6]). In this paper, I show
 that every cliquish function f : X -> R, where X is separable metrisable Baire
 space without isolated points, is the sum of four quasi continuous functions.

 Let X be a topological space and let R be a real line. A function / : X - ► R
 is said cliquish (quasi continuous) at a point aro G X if for every e > 0 and for
 any neighborhood U of the point x0 there exists an open nonempty set V C U
 such that oscv / < e (|/(zo) - f(x)', e for every x G V). A function / : X - > R
 is cliquish (quasi continuous) iff it is cliquish (quasi continuous) at every point
 x £ X. Let Cq(X) denotes the family of all cliquish functions f : X -* R and let
 Q(X) be the family of all quasi continuous functions / : X - > R.

 We have obviously:

 Remark 1. If /, g G Cq(X) and c G R then cf G Cq(X), f + g G Cq(X) and
 fg e Cq(X).

 Remark 2. If /„ G Q(X ) (n = 1,2, . . .) and fn U1^>' f then f G £?(-X").

 Remark 3. ([4]). If X is a Baire space then for every function f G Cq(X) the
 set of all its continuity points is dense in X.

 Remark 4. ([1]). There exists a topological space X such that all functions
 f G Q(-?0 are constant and there are functions f G Cq(X) which are not constant.

 The following lemma is a modification of Natkaniec's Lemma from [3].

 577



 From now on we shall assume that X is a separable metrisable space without
 isolated points. Let H denote a closure of the set H.

 Lemma 1. If A is a nowhere dense nonempty set in X and U G X is an open
 set such that Ā C Ū then there exists a family (Kn,m)°Z=i of nonempty open sets

 m<n

 satisfying the following conditions:

 (1) Kn,m C U'Ä for n = 1, 2, . . . , m < n;

 (2) Kr>s Cl Kij = <f> whenever (r, s) ( i,j ) (r, i = 1,2, ... ,s <r and j < ¿);

 (3) for each x £ A, each neighborhood V of x and an arbitrary m there exists an
 n > m such that A'„im C VÈ,

 (4) for each x £ X'Ā there exists a neighborhood V of x such that the set
 {(n,m), V D Än,m ^ <A} has at most one element.

 Proof. Let (l^)^ be a countable basis of open sets. Let (W/n)^Ļ1 be a
 sequence of open sets such that

 OO

 Wn+i C Wn{n = 1,2,...) and f)Wn = Ā;
 n= 1

 we may assume that
 Wn D Wn+ 1 for n = 1,2,

 Let (Gn)£Lj be the sequence of all sets in the basis (Bn)^=1 such that for every
 n = 1,2,..., U nGnC'A¿ <i>.

 By induction, for every n = 1, 2, . . . , we choose a nonempty open set Kn such
 that

 KncunGnnwn'(Āu[jKi).
 i<n

 All sets of the family have the following properties:

 (i) Kn C U'Ā for n = 1,2,...;

 (ii) Kn CI Km = <t> for n ^ m, n,m = 1,2,...;

 (iii) for each x G Ā and each neighborhood V of x the set {n; Kn C V } is infinite;

 (iv) for each x ^ Ā there exists a neighborhood V of x such that the set {n; V H
 Kn = <ļ>} has at most one element.
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 The properties (i) - (iii) are obvious. We shall show that (iv) is also true. Suppose
 that X Ā. Then there exist an n0 and a neighborhood W of x such that WilW^ =
 <j>. We have obviously

 max {n; W fi Kn <ļ>} < no.

 If x G Km, for any m < n0, then the set V = W ' Un<no Kn is the required
 nļtm

 neighborhood some of the point x. If x $ Kn for every n < n0, then V =
 W ' Un<n0 is the required neighborhood of x.

 Now, for every n choose in the set Kn a family (Kn,m)m<n of nonempty open
 subsets such that:

 (v) Kn,m C Kn for 1 < m < n

 (vi) KntTn fi Kn¿ = <f> for m ^ t and m,t < n.

 The construction of ( Kn,m)m<n (for every n = 1,2,...) is following. Fix n and
 a point xo € Kn. Let (Dm)™= ļ be a basis of the space X in the point x0. By
 induction we choose xm £ Kn and open sets Vm, ( Kn,m)m<n such that

 -iie i<n'{x0), x0 e Vi c Ví c Kn n A'{ii},

 Xl G Kn¿ C /?„,! C ürn'Vi;

 - for 1 < m < n we have

 Xm ^ Vm- Xo G Vm C Vm d (Vm-1 H

 Xm ^ ^n,Tn C -^^71,771 C V^XVm.

 For every n = 1,2, . . . the family (A'„im)m<n fulfills the properties (v), (vi) and the
 proof is concluded.

 Let C(f) be the set of all continuity points of function /.
 Now, we assume that X is a separable metrisable Baire space without isolated

 points.

 Theorem 1. If f G Cq(X) then f = g + h, where g G Q{X ) and h G Cq(X)
 satisfies:

 (1) for every x G X there exists a sequence (in)^ of points ofC(h) convergent
 to x and such that the limit lim^oo h(xn) exists and is finite.

 Proof. Let A be the set of all points x G X such that for every sequence (a:n)^Ļļ
 of points of C(f) convergent to x, if the limit lim^oo f(xn ) exists, then it is equal
 to +00 or - oo. We can assume that <f>. Of course A C {x G X; ose f(x) >1}.
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 Since / G Cq, the set A is nowhere dense in X. Let (Kn,m)°Z=i be a family of
 m<n

 open sets satisfying the conditions of Lemma 1, for the nowhere dense set A and
 U = X. Since X is a Baire space, there exists a sequence of points of

 C(f) such that

 xn,m € Kn,m f°r every n = 1,2,... and m < n.

 Let

 if(xn,i) 0 forx for X G G Kn<1, X'Un=i n = ^n.i, 1,2, ... 0 forx G X'Un=i ^n.i,

 and let h = f - g. Then g G Q(X), h G Cq(X ), h satisfies condition (1) and the
 proof of our theorem is concluded.

 Theorem 2. Let h G Cq(X) satisfies the following condition:

 (1) for every x G X there exists a sequence (xn)^Ļ1 of points of C(h) convergent
 to x such that the limit lim^oo h(xn) exists and is finite.

 Then h = u+w, where u G Q(X ), w G Cq(X) and for the function w the inclusion
 to-1(0) D C(w ) holds.

 Proof. From the assumption it follows that for every x G X there exists a
 sequence (xn)£Li of points of C(h) convergent to x, such that there exists a finite
 limit lirrin-Kjo h(xn) = a(x) G R ■ Obviously, for any x G X there can exist many
 sequences (xn) and the corresponding numbers a(x). Let us now choose for each
 x E X only one a(x).

 Let

 ( h(x) if xeC(h)
 u(x) = <

 ' a(x) if x 0 C(h).
 and w = h - u.

 Then u G Q(X), w G Cq(X) and u>_1(0) D C(w ); thus the proof of our
 theorem is concluded.

 Theorem 3. Let w G Cq(X) be such that u;-1(0) is dense in X. Then there
 exist functions s,t G Q(X) such that w = s + t.

 Proof. If w is a continuous function, then the proof is obvious. In the opposite
 case observe that

 OO

 X'IÜ-1(0) C 0 Ak,
 k= I
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 where

 Ak = {x € X; ose w(x ) > 2-*} for k = 1,2,

 The set Ak (k = 1, 2, . . .) is closed and nowhere dense in X.
 In the first step, from Lemma 1 where A = Ai, U = X, we obtain a family of

 nonempty open sets (Kn,m)°S=i such that:
 m<n

 - Kn,m C X'j4i (n = 1, 2, . . . and m < n);

 - Kn¡m D KTyi = <t> whenever (n,m) ^ (^s), ( n,r = 1,2... and m < n,
 s < r);

 - for each x E A, each neighborhood V of x and an arbitrary m there exists
 an n > m such that Kn,m C V'

 - for each x A there exists a neighborhood V of x such that the set {(n, m);
 V D Kn¡m ý $} has at most one element.

 From the above conditions we conclude that if x 0 A' and x 0 U^=i Um<n Kn,m,
 then there exists an open set W such that x G W and W PI Än,m = 4 for n =
 1,2, ... ,m < n. Arrange all rational numbers in a sequence (tWi.i, . . . , WļiTl, . . .)
 such that ^ w'tj for i ^ j ( i,j = 1,2,...) and define

 {iu(a:) 0 wi,m for for at the x x G e A' {iu(a:) wi,m for x e Kn,m , m < n and n = 1,2,... 0 at the remaining points of X

 and

 {-WiiTn 0 for at the x G remaining Kn,m i rn <n points and of n X. = 1,2,... 0 at the remaining points of X.

 In the second step, arrange all sets Kn,m (m < n and n = 1,2, . . .) from the
 first step and the set

 OO

 x' U U k„„'a2
 n=l m<n

 in a sequence , Zi,n? .... For every Z'¿ (k = 1,2, . . .) with Ži^fl A2 ^
 (j) from Lemma 1, where A = A<i fl and U = Zi^, we obtain a family of
 nonempty open sets such that:

 m<n

 - I<i,k,n,m c Zltk'A2 (n = 1,2, . . . and m < n);
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 - if Ki,k,n,m H I<i,k,r,s î <t>, then (n, m) = ( r,s ), where n,r = 1,2,... and
 m < ra, s < r;

 - for each a: € A2 fi Žiik, each neighborhood V of x and an arbitrary m there
 exists an n > m such that C V;

 - for each x £ A2 there exists a neighborhood V of x such that the set
 {(n,m); Kitk,n,m H V = <ļ>) has at most one element.

 As in the first step, we see that if
 oo oo

 'M.u|j U U tfu...».
 fc=l 7i- 1 n<m

 then there exists an open set W such that x e W and W D K'¿,n,m = <¡> for every
 k,n,m and n > m. Arrange all rational numbers from the interval [- 2-1,2_1]
 in a sequence (w2,i, . . . , w2<n, . . .) with w2ii / w2J for i ^ j, i,j =1,2,.... If
 Zitk n A2 ^ <ļ> (k = 1,2,.. .), then let

 w(rc) for x e (j42'^i) H Zltk

 9i,k(x) = ļ w2,m-i for x e K',k,n,mi n = l,2,...,l<m<n
 k 0 at the remaining points of

 and

 ... Í -w2,m-i for x e I<i,k,n,m, n = 2,3,...,l<m<n
 hi,k{x) = < . . . _

 [0 at the remaining . . points . of Z'tk- _

 If Žļtk D A2 = <ļ> (fc = 1,2, ...), then let

 9i, k(x) = 0 and hiik(x) = 0 for x e Žiik.

 Finally, in the second step, we define the functions g2 , h2 as follows:

 . , Í 9i,k(x ) for x 6 Z'tk (k = 1,2,...)
 g2(x) , = <

 [0 at the remaining points of X
 and

 í ¿í.fc(z) for x G A'Xjfc, (¿ = 1,2,...)
 ft2(z) = <

 [0 at the remaining points of X.
 In general, in the (ra + l)-st step (ra > 1), we arrange all open sets of the form

 oo OO

 Zl,k' U ^2,m'An+i, Z2tk' 1J 23>m'An+i, . . . ,
 m=l m=l
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 oo oo

 Zn- 2 ,k' U ¿n-l,m'An+li Zn-' ,k' (J U Řn-l,k,i,j'An+l
 m=l ť=l j<i

 and Kn-ļtic,i,j (&, i = 1,2,... and j < i)

 in a sequence Zn¡ i, Zn¡ 2, . . . , Zn¡mi ....
 If Knik fi An+ 1 <^>, then by Lemma 1, where £/ = Zn<k and A = j4„+i fi Žn>k,

 there exists a family of open nonempty sets (Kn,kti,j)HÍ 1 such that
 j<i

 ~ Kn,k,i,j C Zn<ic'An+ 1 (ż = 1,2, . . . and j <

 - if Än,fc,,'j n Kn,k,r,a Í <t>, then ( i,j ) = (r, s), where i,r = 1,2,... and
 j < i, s < r;

 - for each x € An+ 1 H Žn>k, each neighborhood V of x and an arbitrary j there
 exists an i > j such that Kntk,i,j C V ;

 - for each x 0 An+ 1 there exists a neighborhood V of x such that the set
 {(¿, j), Kntk,i,j D V í 4>} has at most one element.

 Remark that

 (*) if x £ An+i U UfcLi Uti Uj<¿ Kn,k,i,ji then there exists an open set W such
 that x G W and W fi Kntk,i,j = <¡> for every k, i,j, where j < i.

 Arrange all rational numbers from the interval [- 2-n,2-n] in a sequence iWn+i.i,
 . . . , iun+i,m, . . .) with ± wn+i,j for i ^ j, i,j = 1,2,. . .. If Žn>k n An+1 ^
 (f> (k = 1,2,.. .), then let

 w(x) for x € (j4n+i'An) D Žn>k

 9n,k(x) = ļ ^n+ij-i for x e /?„,*, i, j, ¿ = 1,2,... and 1 < j < i
 0 at the remaining points of Zn¿,

 and

 f -ton+i,j_i for x E Kn,k,i¿i i = 1,2,... and 1 < j < i
 h>n,k'x) = < .

 [0 at the remaining . points of Zn<k-

 If there exist ¿ = 1,2,... such that Zn)jt D An+1 = <j>, then let

 9n,k(^x) - = 0 for X G
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 Furthermore define functions gn+i and hn+ 1 as follows:

 ( ) - Í 3n,k(x) for x € Žn,k (k = 1,2,.. .)
 [0 at the remaining points of X

 and

 , , , Í hntk(x) for x € Zn,k (k = 1,2,. . .)
 hn+'yX) , , , - '

 [ 0 at the remaining points of X
 Finally, we put

 oo oo

 5(x) = XT 9n(x) an<^ Kx) = 5Z hn(x) for x G X.
 n= 1 n=l

 Observe that series are uniformly convergent. Since for every n = 1,2,..., each of
 the functions gn+i and hn+ 1 is continuous at each point

 OO OO oo oo

 X ^ U U U n,k,i,j U (X' Q Q U ^n,fc,i,i'^n+l)ł
 k= 1 i=l j<i k= 1 ¿=1 j<i

 the functions s - g' and t - h' are continuous at each point
 oo oo oo oo oo

 1 e n { u u u u (a u u u K»,kAM«»)} = m.
 n=l k=l ¿=1 j<i k=l t'=l j<i

 The functions gi,h' are quasi continuous at every x G X. Consequently, the
 functions s and t are quasi continuous at each point x G M , because they are sums
 of everywhere quasi continuous functions gi,hi and the functions s - gi,t - hi are
 continuous at this point.

 Now let x G X'M. Then
 OO

 X G Kn,lc,i,j'Kn,k,i,j' (J f°r some k,i,j ( j < ¿),
 71=1

 or
 oo

 x e LUn.
 n= 2

 Let x G Kn,k,i,j'Kn,k,i,j ' Un=i An, let e > 0 be a number and let V be a neighbor-
 hood of x. Since all functions gi,hx,. . . ,gn,hn are continuous in the point x, there
 exists an open nonempty neighborhood U C V of the point x such that

 I H 9k(x ) - Y, 9k{u) I < j and | M* ) - J2 ' < j
 k<n k<n k<n kKn
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 for all points u G U . Observe too, that the functions 5n+i,^n+i are constant on
 the set Kn^iji and that

 u n Kn.k.ij ^ či xeun Kn,k,i,j-

 Since series Y^=i 9n ? hn are uniformly convergent, there exists a natural
 index N > n + 1 such that

 o° oo

 I E #(«)! < T and I £ *ť(")l < 7
 i=N+l 4 t=N+l ^

 for every u G X. Since x G Kn,k,i,]'Kn,k,i,j, we have a: £ Km,i,r,a for m > n, /, r =
 1,2,... and s < r.
 From the condition (*) it follows that there exists an open set W containing x

 such that for m = n + 1, . . . , N

 W n Km<itr,s = <t> {hr = 1,2,... and s < r).

 Finally, for u G W fi U fi Knik,i,j , we have
 oo oo

 |s(x) - s(u) I = I ¿gi(x) - ¿g¡(u) | <
 /=1 1=1

 < Y,9ì(X) - ^2g¡(u) I + |0„+i(x) -^n+i(u)| +
 l<n l<n

 N N oo oo

 + i £ mi*)- £ 0/Mi + i n 0OO- s ^'(u)i <
 l=n+2 l=n+2 l=N+ 1 l=N+ 1

 < - + 0 + 0+ - <£,
 4 4

 which shows that s is quasi continuous at x. It may be shown similarly that the
 function t is quasi continuous at a: E Kn,k,i,j'Kn,k,i,j' IXLi An. In an analogous
 way one shows that functions s and t are quasi continuous at all points

 X e Kn,m'Kn,m (n = 1, 2, . . . and m < n).

 Now let x G j4„'j4„_i for any natural number n > 1. Fix an e > 0 and an
 open neighborhood V of the point x. Observe, that for 1 < n all functions, except
 maybe one which we denote by g^, are continuous at x. Moreover, if there exists
 li < n such that the function g¡¡ is discontinuous at x, then x €E Ki2ik,r,s'Kh,k,r,at
 where /2 = /1 - 1. Consequently there exists an open neighborhood U C V of x
 such that

 1 2 9i(x) - Y, fi"(u)l < 7 for every u e u.
 l<n l<n ^
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 Since the series Y^i 9i is uniformly convergent, there exists a natural index N > n
 such that

 00 e

 I Xl 9i(u)' < j 4 for every u G X. Ì=N+ 1 4

 Observe, moreover, that gn(x ) = w(x) and ose w(x) < 2~n+1 for n > 2. There
 exists a rational wn<m G [- 2~n+1, 2_n+1] such that |^„(x) - wn¡m | < Since
 X G .An ^/2 there exists an open set Kn-itk2,r2tm C ^/2 iktrts H U {im 1). Of
 course,

 lífn(x) - 0n(«)| = |tü(«) - Wn,m' < J

 for « G Kn-i,k2,r2lm- If Ä"n-i ,k2,T2,m H -^n+i 7^ <l> then there exists an open set
 Kn,kn,rn,' C and if Ki,ki,TU' n A.-+2 / 4 for ¿ = n, n + 1, . . . , N - 1,
 then we choose successively open sets Ki,kitn, i (i = n + 1, . . . , N) such that

 I<i,ki,r¡, 1 C I<i- !,*,•_! .„-Li for i = n + l,...,N.

 Of course r„,i C U D Kiuk,r,s C V (if_/?,-,jk,iri,i H Ał+2 = (f> for any i =
 n, n + 1, . . . , N - 1, then gi+ x = 0 on the set KitkiiTiA).

 For each u G I<N,kN,rN,i we have
 oo oo

 |s(x)-5(ii)| = |¿^(x)-£^'(u)l < I EaW- +
 /=1 /=1 Kn l<n

 W 1 Wi

 + kifa) -^/i(«)l + M^) -gn(u)' +
 N N oo oo

 + I Ē ^(x) - H #(u)l + I £ 9i(x) - £ 3z(u)| <
 ¡=n+ 1 i=n+l /=N+1 /=JV+1

 EEE

 < 7 4 + °+7 4 + °+7<e> 7 4 4 4

 so that the function s is quasi continuous at x.
 Now let x G Ai . Fix an e > 0 and an open neighborhood V of the point x.

 There exists a rational number ioi)m G R such that |u>i,m - iu(a:)| < f . There exists
 also an open set Kn 1 ,m C V such that

 M*) - fl'ii")! = ki.m - w(x)| < I

 for every u G Kni,m- The series 9i is uniformly convergent, so that there exists
 a natural index N > 1 such that

 °° £
 I /C tf'i1')! < 7 £ f°r eac^ u G X.
 I=N+ 1 4
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 If Kni,m r'A2^<f> then, similarly as before, there exists an open set A'i,fci,ri,i such
 that /l'i,*! ,rili C Kni,m and if, for i = 1,2, . . . , N - 1, we have H Ai+i ± <j>,
 then we choose successively open sets (¿ = 2,3,..., N) such that

 -Ani.m ^ -^2,fe2,r2,l ' ' ' - ^ ^ N,kpļ,rfļ,l

 Then, for u G I<N,kN,rN,i , we have

 oo oo

 |s(x)-s(u)| = < ki(®) -fl'xHI +
 /=1 /=1

 N N oo oo

 + I Ž #(*)-£#(«) I + I D ¡ni*)- Ž #(«)l <
 1=2 1=2 l=N+ 1 l=N+l

 £ „ £
 < 7 + °+ „ 7<e- 7 4 4

 Consequently, s is quasi continuous at each x G IXLi -^n- Similarly, the function t
 is quasi continuous at x G U^Li An.

 Now observe, that from the definition of the functions g¡ and h¡ it follows that
 for /= 1, 2, ... we have

 hi(x) + gi(x) - w(x) for every x G Ai'Ai-i

 and

 hi(x) + gi(x) = 0 for every x G X'(j4/'j4í_i).

 Finally, for /= 1, 2, ... we have

 ' f u'(x) if x G Ai
 ¿Nx) + Mx)] =
 k= i { 0 if x G A 'A¡

 and

 OO OO oo

 s(x) + t(x) = 9i(x) + H h'(x) = H M*) + M*)] =
 /=1 / = 1 /=1

 /

 = lim y; [gk(x) + hk{x)] = w(x),
 l^°°k= i

 for each x G X' thus the proof is concluded.

 From Theorems 1, 2 and 3 we obtain:
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 Theorem 4. If f G Cq(X), then f = g + m + s + t, where g , m, s, í G Q(-?0.

 Remark 5. If f E Cq(X) is a locally bounded function then f = g + h + t,
 where g,h,t G Q(^).

 Let £?0(1 < a < Uļ, where u>i is the first uncountable ordinal number) be the
 set of all functions f : X R of the Baire class a.

 Remark 6. If f G Cq(X) then f is the sum of functions g,u,s,t G Q(X),
 with g,u,t G Bļ.

 Proof. From the proof of Lemma 1 it follows that g G Bļ. Since in the proof
 of Theorem 3 t = Ylfii hi, where h¡ G Bi for each / = 1,2,..., t G Bļ.

 Finally, observe that if h from Theorem 2 is the function h from the proof of
 Theorem 1, then in the proof of Theorem 2, u can be defined by the formula

 h(x) if X G C(h)

 lim sup h(t) if X $ C(h) and
 u(x) = < t -* X X E {t E X; ose h{t) < 1}

 t G C{h)

 0 at the remaining points x G X,

 so that u G Bļ, and thus the proof is concluded.

 Let M(X) be the family of all functions / : X - ► R which are measurable
 relative to a cr-ring containing all Borei sets in the space X.

 Corollary 1. If f G Cq( X) D Ba (or f G Cq(X) D M(X)) then f is the sum
 of four functions g, u,s,t G Q(X ) D Ba (f is the sum of four functions g, u,s,t G
 Q(X) D M(X)). Moreover, if f G Cq(X) D Ba (or f G Cq(X) D M(X)) and
 f is a locally bounded then f is the sum of three functions g,h,t G Q(X) D Ba
 (g,h,teQ(X)nM(X)).
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