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 ON 771-RINGS of functions and some
 GENERALIZATIONS OF THE NOTION OF DENSITY

 POINT

 Abstract. In this paper we investigate properties of some rings and ideals of
 real functions. Moreover we present some generalizations of the notion of density
 point.

 In 1985, there appeared a paper ([3]) by W. Poreda, E. Wagner-Bojakowska and
 W. Wilczyñski in which a certain kind of density points was defined topologically.
 This paper presented a new method of showing parallels between the cr-ideals of
 first category sets and sets of Lebesgue measure zero, i.e., was a successive study
 of cr-ideals of sets. Further explorations of these ideas can be found in many
 interesting papers ([1],[4],[5],[6],[7]).

 Along with ideals of sets, other small systems of sets were studied. In connec-
 tion with this, small systems of functions were investigated. The first place we
 encountered this notion was in a paper from 1972 by Prof. B. Riečan [8]. Studying
 the results of investigations connected with these problems, one can observe that,
 in many places, what is essential is the algebraic structure of the classes of the
 transformations which are examined. Hence the themes of the present article con-
 centrate around an algebraic approach to the problems of meas urabi lity, density
 points and other questions connected with these problems. Such an approach to
 the subject creates, on the one hand, new possibilities of discussing these problems
 in more abstract spaces; on the other hand, a close connection with the problems
 considered by, among others, the groups of Profs. W. Wilczyñski, B. Riečan or L.
 Zajiček makes the facts presented here constitute, indeed, generalizations of the
 earlier results.

 Throughout the paper, we use the classical symbols and notations. By the
 letters R and N we denote the real line and the set of all positive integers, resp.
 The symbol 'a stands for a characteristic function of the set A.

 For an arbitrary function / defined on A C X we adopt

 Íf(x) 0 for for X X ft E A. A, 0 for X ft A.
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 Given two sets A and B and a G B, the function const£,B is the constant
 function from A into B with value a. If we omit A and B in this notation, then
 we assume that these sets are fixed beforehand.

 We adopt Z(f) = {a: : f(x) = 0} and for arbitrary {/„} we denote by
 £(fn) = : limn^oo fn(x) does not exist} (if, for example, limn_).00 /„(x) = +00
 we understand that this limit does not exist either).

 We adopt A A B = ( A'B ) U (B'A).
 Moreover, assume the following definitions:
 We say that a sequence of functions {/*} is cofinal with a sequence of sets of

 functions {>!„} if for every n £ N there exists k G N such that fk G An.
 We say that a sequence of functions {fk} is *-cofinal with a sequence of sets of

 functions {An} if for every subsequence {ftk} of {/*} there exists a subsequence
 {fStk} cofinal with {An} and G for every « = 1,2, . . . .

 To begin with, we shall deal with special kinds of rings of functions and ideals
 (in the algebraic sense) of these rings, and show a close connection between these
 objects and the ideas of cr-algebras of sets and set theoretic er-ideals (in the sense
 of set theory).

 DEFINITION. Let X be an arbitrary set. We say that a ring S with the
 unit, of real functions defined on X is an m-ring if:

 1. |/| 6 S and ( j)' G S for every / G S]

 2. if / = lim^oo /n, where {/„} C S , then / G S.

 THEOREM 1. (a) Any m-ring S forms the family of all measurable functions
 with respect to the a-algebra {A C X : xa G 5}.

 (b) Any family of all measurable functions with respect to some a-algebra is
 m-ring.

 Proof, (a) First we shall show that the family A = {A C X : xa £ 'S'} is
 cr-algebra of sets.

 Assume that A G A. This means that xa G S and so - (Xi4 - consti) G S. On
 the other hand Xx'A = ~ (x¿ - consti) which means that X'A G A.

 Now, let {j4n} C A. We shall show that U^=i -^n G A, i.e.

 (i)

 Notice that:

 Xpuq € S, for every P,Q G A.
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 Therefore, it is not hard to check that:

 (2) Xyk a ^ ^ ^or every positive integer k.
 Notice that:

 From the above, by (2) and condition 2 of the definition of an m-ring, we may
 infer that relationship (1) does take place.

 We shall now show that S includes all measurable functions with respect to A.
 Let us first observe that const, G S for every rational number q. Therefore, by
 condition 2 of the definition of an m-ring, each constant function belongs to S. So,
 by the definition of A, every simple measurable function belongs to S. Therefore,
 in view of 2 of the definition of m-ring, every measurable function with respect to
 A belongs to S.

 To finish the proof (a), it suffices to demonstrate that every function / G S is
 measurable with respect to A. Let a be an arbitrary real number. Note that:

 X{x:f(x)> ' or} ' = ( ' or} ' 'max 7TĪ~' (/(i) - consta(x), . / > 0) M / v v ' v ' '

 Thus, by the condition 1 of the definition of m-ring, the function on the right
 side of the above equality belongs to S, and so {x : f(x ) > a} G A which implies
 that / is measurable.

 Proof (b) is immediate.

 REMARK. By ^(S1) we denote the <r-algebra from (a) of the above Theorem
 and by 5(^4) the m-ring of all functions measurable with respect to the fixed
 <7-algebra A ((b) of Theorem 1).

 DEFINITION. Let X be an arbitrary set and let S be an m-ring of real
 functions defined on X. We say that an ideal of S is an m-ideal, if the following
 conditions are fulfilled:

 1. If / = lim^oo /n, where C J , then / G J.

 2. If ļflfļ < l/l, where / G J, then g G S.

 THEOREM 2. (a) For every m-ideal J of the m-ring S the family Jj =
 {-<4 C X : xa ^ J] is a a -ideal of the cr-algebra ^4(5") (we say that Jj is the a -ideal
 generated by J ).
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 (b) For every a-ideal J of sets belonging to the a-algebra A the family Jj =
 {/ : X -* R : X'Z(f) G «/} is an m-ideal of the m-ring (we say that Jj is
 the m-ideal generated by J).

 Proof, (a) Let B G Jj and A C B. Then xb G 3 • Moreover |x>i| < |xb|,
 thus xa £ S. Therefore Xa = Xa - Xb € 3-

 Now let {j4n} C J j. We shall show that (J^Li G Jj , i-e. X(J°° ļ a„ £ 3 • The
 method used to prove the above fact is analogous to the proof of Theorem 1(a).
 Because Jj C «4(5) the proof of (a) is finished.

 (b) Remark that 3j C S'(^4). Indeed, let / G 3j and let a € R. Consider
 {x : f(x) < a}. We may consider two cases:

 Io. a < 0. Then {a: : f(x) < a} G J C A,

 2°. a > 0. Then {x : f(x) > a} G J C A and so {x : f(x) < a} =
 X'{x : f(x) > a} G A.

 From the above we may deduce that / G
 Now, we shall show that 3j is an m-ideal of 5(^4). It is easy to see that 3 J

 is closed with respect to the addition of functions. So let / G and g G 3j-
 Then Z(f • g) D Z(g) and consequently X'Z(f • g) G J- Therefore 3 J is an ideal
 of 5'(^).

 Now let {/„} G 3j and / = lim^oo Then Z(f) D f1£Li z(fn) and so
 X'Z(f) G J. Hence / G 3j.

 To finish this proof it suffices to demonstrate that condition 2 of the definition
 of an m-ideal takes place. Let / G 3 and g : X - * R be a function such that
 M ^ |/|- Thus Z(g) D Z(f) which means that X'Z(g) G J and consequently
 g G 3 j C S (A), which finally completes the proof.

 Since the algebraic structure is evident within the classes of functions we have
 considered, it is difficult to avoid asking about the algebraic structure of the m-
 ideals. For example, it is not hard to see that any m-ideal 3 of any m-ring S is
 a linear space (if the product a • f - where a G R and / G 3 ~ is interpreted as
 consta * /)• Consequently, it is interesting to ask about the dimension of this space.
 The answer to this question is included in the following theorem.

 THEOREM 3. Let J be an arbitrary m-ideal of some m-ring S . Then the
 following conditions are equivalent:

 (i) dim 3 = oo,

 (ii) 3 contains some function which assumes infinitely many values,
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 (iii) for a -ideal Jj generated by J' card Jj > No-

 Proof, (i) =► (ii). Let xi be a point such that, there exists some function
 / G J, that f(xļ) ķ 0. Hence X{*!> G J.

 Assume that we have pairwise distinct points xi, . . . , xn_i such that i • X{xi} £
 J . Then the collection {¿ • X{ri} :* = - 1} is linearly independent. Since
 dim J = oo, then there exists h G J such that h, X{xi}i 2-X{¡r2}> • • ■ » in~ 1) "Xixn-i}
 is linearly independent. This means that there exists xn £ {ari, . . . , xn_i} and
 h(xn ) ^ 0. It is not hard to check that n • X{x„} G J •

 Continuing this procedure we obtain infinite sequence {n • X{xn}) £ 3 such that
 Xi ^ Xj for i ^ j. Hence

 n

 ]C i ' e 3 for evefy " = i,2,... .
 i=l

 This means that lim«-^ £"=i i • X{xj G J , but

 , -A. Í1 f°rx = Xi (i = 1,2,...),
 Jig, E' ■*{*.•}- ļ 0 for X ^ {xi, Xi X2, . . .},

 and consequently, J fulfills (ii).

 (ii) =>• (iii). Let / G J assume infinitely many values. Then A = {x : f(x) ^ 0}
 is an infinite set and we may remark that

 X{x} € J for every x G A,

 which means that {x} G Jj, for every x G A.

 (iii) => (i). From the assumption we have made, it follows that there exists an
 infinite set A such that A G Jj. Let ai, ūļ, ... be a sequence of pairwise distinct
 point of A. Thus X{oi}> X{o2}, • • • is a sequence of functions belonging to J and
 this collection is linearly independent.

 With many considerations carried out in the sequel, it is more advantageous
 to apply, instead of m-ideal of functions, some sequence of sets of functions whose
 intersection will be the given m-ideal. This situation resembles a connection of
 <7-ideals of sets and small systems of sets ([2]).

 DEFINITION. Let S be an arbitrary m-ring of functions. A family T =
 {Fn : n = 1,2,...} of subsets of S is called an m-system of the m-ring S, if
 {^n}£Li is a decreasing sequence satisfying the following conditions:
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 (i) If /,• G Fi (i = n, n + 1, . . . , n + r), then £?=n /, G Fn- 1-

 (ii) If {/jt}fcLi is cofinal with {.Fn}^, then g • (lim*-,» fk)* G Fn, for every
 function g E S and for every n G N .

 (iii) If for a function g there exists a sequence {fk} cofinal with {i^n} such that
 'g' < 'fk' (for k = 1,2,. . .) and l{fk) C Z(g), then g G S.

 (iv) If / G Fn, ge S , and |flr| < |/|, then g E Fn (for n = 1,2, . . .).

 The idea of the above definition is connected with the definition of a small

 system of functions ([8]).

 THEOREM 4. Let {Fn : n = 1, 2, . . .} be an m-system of the m-ring S . Then
 J = J({Fn : n = 1,2, . . .}) = fin=i Fn is an m -ideal of the m-ring S (we say that
 {F„ : n = 1,2, . . .} generates J{{Fn : n = 1,2, . . .})).

 Proof. Let f,g G J. Then f,g G Fn (for n = 1,2, . . .) and according to (i),
 / + g G Fn (for n = 1,2, . . .) which means that J is closed with respect to the
 addition of functions.

 Now let / G J and g G S. Condition (ii) implies that g- f G J and so J is an
 ideal of S. Since conditions 1 and 2 of the definition of m-ideal immediately follow

 from (ii) and (iii), then this proof is finished.
 It is easy to see that if J is a fixed - m-ideal of functions of some m-ring 5,

 then, putting Fn = J (for n = 1,2,.. .), we obtain an m- system {Fn : n = 1, 2, . . .}
 such that IXLi Fn = J • Such an m-system is called a trivial m- system generating
 J. If S is an m-ring and J = 5 is an m-ideal of the m-ring S, then the only
 m-system generating J is, of course, a trivial m- system. However, it turns out
 that, for an m-ideal J ^ S, there always exist non-trivial m- systems generating
 this m-ideal.

 LEMMA 1. Let f be an arbitrary function belonging to the m-ideal J of the
 m-ring S and g be a function such that {x : g(x) / f(x))} G Jj. Then g G J ■

 Proof. Infer that g G S. Let T = {x : f(x) ± g(x) A f(x) = 0}. Of course
 T G J j. Thus XT G J and / + XT G J and moreover (/ + Xt)(x) ± 0 for every x
 such that f(x) ± g(x). Consequently
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 THEOREM 5. Let J be an m-ideal of the m-ring S such that J ^ S . Then
 there exists a non-trivial m-system {Fn : n = 1,2, . . .} of the m-ring S generating
 J.

 Proof. Let A' be a domain of functions from S. Put:

 Fn={feS: 3 sup |/(aO-áf(s)| < ¿-J for n = 1,2,... .
 g £ J xeX

 We shall first prove that {.Fn : n = 1, 2, . . .} is an m-system. One can see that
 {^n}£Li is a decreasing sequence of subsets of S. We shall now prove the veracity
 of (i) of the definition of m-system.

 Let fi G Fi (¿ = n, n + 1, . . . , n + r). This means that there exist <7,- G J
 (¿ = n, n + 1, . . . , n + r) such that

 sup 'fi(x) - #(x)| < ¿ (¿ = n, n + 1, . . . , n + r). xÇX ¿

 Hence ^2?Źn 9i € J and moreover

 n+r n+r -i

 Slip I È fi(x) - £ &(x)| <
 x€X t=n t=n z

 so £?=+nr/;e Fn_i.

 To verify (ii) from the definition of an m-system, assume that {fk)kLi is cofinal
 with {Fn}£lļ. We shall now prove that

 (!) (lim fk)* e J.
 k-+oo

 9kn £ J (n = 1, 2, . . .) be a function such that

 snp'fkn(x) - gkn(x)' <
 xex ¿n

 It is evident that

 (2) <(/*„) =
 and

 jUg, = Ji™, 9kn{x) for X Č £(fkn) = i{gkn).

 Put (for n = 1,2,...)

 ... Í 9kn{*) if a: ČĶfkn) =%ikn),
 hkn(x) ... = <

 [O if a: G ^(A„) = ^(^„).
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 Since |/ifcn(x)| < |flr*n(s)| {n = 1,2,.. .) then hkn G S and so hkn = hkn- (^-) -gkn G
 »7 (n = 1, 2, . . .) and the following limit exists

 Jim Ai. = (Jim jO'-

 By (2),
 ( xn- lim /*„)* 7 = ( lim gkny 7 = lim hkn € J. xn- >oo 7 n- »-00 7 n- »-oo

 Infer that

 I ( lim /fc)*| < |( lim fkny',
 fc- ► OO 71-+00

 which means that (1) is satisfied.
 By virtue of (1), we may infer that

 g • ( lim fa)* eJcFn (n = 1, 2, . . .) for every g e S.
 K-+00

 Assume that the assumptions of (iii) are true. We shall show that

 (3) 'g' < |( lim h)'].
 k - ►oo

 Indeed, if a: G Z (g), then the inequality |jf(x)| < Klimjt-^oo /fc)*(®)| is evident.
 Suppose that x & Z(g). Then there exists limjt-^oo fk(x) and by the assumption:
 |<7(z)| < |/*(aOI for fc = 1,2, . . . , we obtain |£f(x)| < | lim*-oo fk(x) |. This ends the
 proof of (3).

 From the above reasoning (lim k-Kx> fk)* G J and so |(lim*_too fk)*' =

 Klim/t-^oo A)* I • ((linn^eo /*)) ' S Ji which together with (3), and
 the fact that J is an m-ideal of the m-ring S gives g 6 S.

 We shall now show that the condition (iv) from the definition of an m-system
 holds.

 Let n G N, f G Fn, g G S and ļ^rļ < |/|. Then there exists h e J such that
 suP*gx l/(a) - M*)l ^ W- Put

 h un x I h(Xi {oixČZ(g), h un (x x J - '

 ' ļ 0 for a: G Z(g).

 Then |/ł'| < |Ä| and so h' G S. Moreover h' = h' • (ļ) • h G J . Put

 i ( ' Í ff(x) {orx ć z(h')>
 hļ(x) i ( ' - <

 ļ 0 for x G Z (h').

 557



 Hence, according to Lemma 1, £ J. It is not difficult to notice that
 suPx6X líH1) - ^ which means that g G Fn.

 Infer now that {Fn : n = 1,2, . . .} generates J . Of course J C iXLi So
 let / 6 n~i Fn- This means that for every n E N there exists gn E J such that
 SUP*€X I f(x) - 0n(*)l < ^r- Consequently lim^^ gn = f and / G J.

 We have presented a proof of the fact that {Fn : n = 1,2,...} is an m-system
 generating J . We shall show that this m-system is non-trivial.

 Let h £ J be a bounded function belonging to S. Thus ļ ^.(rc) | < M for every
 X E X. Consider the following function:

 fn = 2^ • h for every n E N.

 Then |/n(z)| - f°r every x E X, n E N and so /„ G Fn'j7 for every n G N.
 This ends the proof of Theorem 5.

 DEFINITION. Let S be some m-ring of functions and let J be an m-ideal
 of S. We say that a sequence {/*} C S, J"-tends to a function / G S (we write
 J - limfc^oo fk = /), if

 ( lim fk)* - f G J.
 AC- KX)

 THEOREM 6. Let S be some m-ring of functions and let !F be an m-system
 of S and J = JiF), then

 (i) Ififk - f }£=i is cofinal with T and Xt(h)'zU) e «7, then J - lim*^ fk = f.

 (ii) If J - lim*-»«, fk = /, then (limk^oo(fk - /))* G J.

 Proof, (i) From the assumptions we may infer that (lim^ooí/* - /))* £ J •
 Since Xi(h)'z(f) G J , then

 {x : ( lim (fk - f))*(x) Ï (( lim /*)* - /)(*)} G Jj ,
 K-*OO k-*oo

 which, according to Lemma 1, means that (lim^oo fk)* - f G J .
 (ii) First we shall remark that

 (*) -/)(«)/ 0, for every x G £(fk)'Z(f).

 Put now

 J ((linw /*)*-/)(*) for x G i(fk)'Z(f), h(x) = <
 ļ 0 for x £ ¿(fk)'Z(f).
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 Then h G jT'and by condition (*), h(x) ^ 0 for every x G £(fk)'Z(f). Moreover

 X¿(fk)'Z(f) = Q) • hej ,

 which means that £(fk)'Z(f ) G Jj. Because

 {x : ( lim (fk - /))•(*) ¿ (( lim /„)' - /)(x)} C l(h)'Z(S),
 k - ►oo Ac- ►oo

 Lemma 1 yields (limfc_>00(/jfe - /))* G J'.

 Simple examples show that the implications in Theorem 6 cannot be reversed.

 We shall now aim at defining a density point of a set on the basis of the
 properties of real functions and the algebraic properties of the classes of functions
 distinguished here, without referring to the structure and properties of the sets
 under consideration. Thanks to that, it will be possible to consider, among other
 things, the density topology in more abstract spaces. (For example, a space in
 which neither topology nor measure is preassigned.) However, as will be pointed
 out below, our definition can be considered a generalization of both a density point
 in the case of measure and a «/-density point in the case of category on, for example,
 the real line.

 Let X be an arbitrary set, S be an m-ring of real functions defined on X and let
 J be an m-ideal of S. For each x G X let us assign a set Bx such that 'BX £ S'J
 (the set Bx is called (5, J) - large for x). By the symbol Bs,j we denote the family
 of all (5, J) - large sets. For each x G X let a mapping (px : A(S) x N - > A(S)
 satisfying the following conditions:

 1. (px(A,n ) D (px(X'A,n) = <f>, for every A G ^4(5) and n G N.

 2. y>x(A'JB, n ) = <px(A , n) U <px(B, n ), for every A,B G «4(<í>) such that AC'B =
 <f) and n G N.

 3. ipx(A, n) G J j, for every A G J j and n G N .

 4. <px(A, n ) D <px{B , n) = (px( A D B, n ) for A, B G ^4(5) and n G N.

 5. <px(X, n ) = X , for n G N.

 By the symbol $5 we denote the family {ipx : x £ X}.

 DEFINITION. Let X be an arbitrary set, S - be an m-ring of real function
 defined on X and let J be an m-ideal of S. Let a;0 G X , Bxo - (5, »7)-large set for
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 xo and <pXo G $5. We say that x0 is a ( Bs,j , $s)-density point of a set A G
 if for every strictly increasing sequence of the positive integers there exists
 a subsequence {s^}^ of such that

 J - lim H BX0 = XBx0 u • fc- ► OO u

 By the symbol Lbs<Jì<ìs{A) we denote the set of all ( Bs,j , $s)~density points of A
 (if Bs, j, 3>s are fixed, then we short write L(A)).

 It is not hard to verify that the above definition is a generalization of the notion
 of density point on the real line and /-density point in the sense of category. It is
 sufficient to put Bx = [-1, 1] and <f>x(A, n) = n - (A - x ), for 2; G il and n e N.
 To simplify the notation, assume from now on that X is a fixed set and S is
 the m-ring of real functions defined on X. Let J be a fixed m-ideal of S and T j
 be an m-system generating J . Moreover, we assume that for a fixed point xo, BXo
 always denotes the set (5, JT) -large for x0 and by <f>Xo we understand the function
 from $5 corresponding with x0.

 LENINI A 2. Let A and B be disjoint sets such that xa G S and xb € ¿7 .
 Then, if x0 is a (Bs,j,$s) -density point of AUB, then x0 is a (Bs,j, $5) -density
 point of A.

 Proof. From the disjointness of A and B we deduce that X¥>*0(AuB,A:)nBI0 =
 XVxo(A,k)nBxo + X>Px0(B,k)nB,0 for k G N. Since XVxo(B,k)nBx 0 G J, then

 C1) ix : XVxo (AuB,k)nBX0(x) Ž Xvx0(A,k)nBX0(x)} G Jj

 for k G N.

 Let {tk} be an arbitrary increasing sequence of positive integers and let {stfc}
 be a sequence of {i*} such that

 (jfe x**o(A U B> n Bx°Y * *B*o € 3-

 Then, by (1), {x : (lim*-»,» xVxo (A U £,. stk) D BXo)*{x ) ± (lim*^ xVxo(A, stk) n
 BXo)*(x)} G J j and consequently

 ~ *B*o £ 3 ,

 which ends the proof.

 LEMMA 3. Let Ac B be sets such that Xa,Xb € S. If x 0 is a ( Bs,j,$s)~
 density point of A, then Xq is a (Bs,j,<&s) -density point of B.
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 Proof. Let {<*} be an arbitrary increasing sequence of positive integers and
 } be a subsequence of {tk} such that

 ~~ XBx° e ^ '

 Of course, | lim^ XVxo(B,stk)nBxo)* ~ Xbxq' < Klim^ XVl„(>Mtfc)nBI0)* - XbJ
 and so (lim*.^ XVl0(BlitJk)nBI0)* - Xbxq 6 J, which ends the proof.

 LEMMA 4. If xo is a ( Bs,j , $s)~density point of A, then xo is not a
 {Bs, j, <&s)~density point of

 Proof. Let {i*} be an arbitrary increasing sequence of positive integers and
 {s**} be a subsequence of {i*} such that

 (!) (¿1™ Xvxo(A,stk)nBIoy - XBx o e J •
 Of course, {stk } is an increasing sequence of positive integers. Suppose, to the
 contrary, that xo is a (Bs,j, $s)-density point of X'A. Hence there exists a
 subsequence {za,k} of such that

 / = ~ *B*o e 3 •

 Denote by
 P = {x: # 1}

 (all points, for which above limit does not exist, belongs to P ). Then |xp| < |/|
 and so XP é J .

 Remark that Klimjt-^ X*,0(/i,*,tfc)nBI0)1 < |xp|, consequently

 (2) (¡™Xvxo(A,z.tk)nBxoy e J.
 By (1), it is not hard to check that:

 (3) (j}™, XVxo(A,z.tk )n bxq )* - XBxo e J .

 In virtue of (2) and (3), we may infer that

 XBi o X<Px0(A,z¡t ^ )nBXg ) X<Px0(A,zSt^ )n£?IQ ) Xfîi0 ] £ 3

 which is impossible because BXo £ Bs,j. This contradiction ends the proof.

 It is not difficult to verify that, in the general case, the analogue of the theorem
 on density points does not have to hold. Therefore, in this case, it is essential to
 seek sufficient conditions under which such a theorem may be proved.
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 THEOREM 7. Let S, 3 ,Tj satisfy the following condition:

 i f XT £ S'3, then there exists a function g G J
 such that ( xt + d)(X) C {0, 1} and for each

 (*) xo G ( Xt + <7)-1(l) H T there exists a sequence of sets
 {T,} C -A(jS') such that Bxo C <pXo(Ti,i)(i G N) and the sequence

 * 5 * ~co final with J~j.

 Then Xaal(a) € 3 , for every A G A(S). (It is not hard to verify that in the case
 of measure theory the assumption (*) is fulfilled.)

 Proof. Let A G A(S). First we shall show that

 (!) Xa'L(A) £ 3 ■

 In the case if xa € 3 the condition (1) is evident. So, we may assume that
 Xa G S'3- Let g G 3 be a function fulfilling the condition (*).

 Let us adopt D' - (xa + <¡r)-1(l) an<l Aa = <7-1(oí)> where o is a value assumed
 by g. It is easy to see that

 (2) XA_anA G J.

 Remark that

 (3) A = (A_! n A) U (A D A).

 If XDi G 3 , then XDinA £ 3 , and consequently (according to (3)) xa -
 XA-iha + XDiha £ 3 -, which means, that (in this case) (1) is true.

 Now, we assume that xdj £ 3 • We shall show that Dx n A C L(A). First, we
 remark that:

 (4) A = (A0nA)u(M^)-

 Let xq G D' D A, then ((4)) xo G Aq D A. According to our assumptions there
 exists a sequence {T,} C >1(5) such that BXo C <pXo(Ti,i) (for i G N) and the
 sequence {xVl0(T,,«)W1?(D„¡)} is *-cofinal with Tj.

 Let {/>,} be an arbitrary strictly increasing sequence of positive integers. There

 exists a subsequence {sp,.} of {p,} such that {x^0(TSp.,aPi)'Vlo(D1)ip<)} is cofinal with
 Tj and

 Then, according to (ii) of the definition of m-system,

 f X'Pxo(Ttpi,Spi)'<Px0{Di,Spi)) E 3 -,
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 and so

 X{ar:/(x)#0} £ 'I •

 Let us now adopt

 Z-i = {x: f(x) 0} U '(xVjt0(r.PÍ,.w)'v,0(Dit.pí))

 and Z = BXo'Zļ.
 Thus xz' 6 J.
 It is not difficult to check that

 Jim XVxo(T.Pi,sPi)'Vxo(DusPi)(x) = 0, for x e Z.

 Infer that there exists i0 E N, such that for each i > io, x E <pXo(Di,sPi), which
 means that

 Jim for xeZ-

 Put h = (limi-Kjo Xvx0(D¡,sPi)nBxo)* ~ Xbxo ■ Hence 'h' < | xzA and so h E S. Conse-
 quently h E J . Thus

 3 - ¿m = *B*o>

 which means that xo E L(Dļ). However, xAì E J and so Xi4i'.4 E J and, according
 to Lemma 2 (by (4)), we have that ®o E L(Ao D Ä). According to Lemma 3,
 xq € L(A). Thus we have really proved that

 D1nA C L(A).

 From the above and (3) we may infer that A'L(A) C A- ' fi A. Consequently,
 according to (2), we deduce that (1) is true.

 We shall now prove that
 XL(A)'A € J ■

 Infer that

 (4) I(A)'A C (X'A)'L(X'A).

 Indeed, let x E .L(j4)'A This means that x 6 and since x E L(A), by Lemma
 4, x g L(X'A).

 On the first part of this proof: X(X'y4)'L(X'/i) £ J • From the above and accord-
 ing to (4) we have

 IXL(/1)'>I| < |X(XV4)'L(AVt)|
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 and so Xl(>1)'j4 € J . Finally remark:

 Xaal(A) = XA'L(A) + XL(/i)'/i € J ,

 which ends the proof.

 THEOREM 8. Let S, J satisfy the following condition :

 if XT £ S'J, then there exists a function g G J
 / v such that ( xt + ff)(X) C {0, 1} and for each

 xo € (xt + flO-1(l) there exists ko G N such that
 for every k > k0, BXo C <¿>x0((xr + k).

 Then Xa&l(A) £ J ¡ for every A G (It is not difficult to show that in the
 case of category (ci. [3]) the assumption (**) is fulfilled).

 Proof. We shall first prove that Xa'l(a) € J- If Xa € J this fact is evident.
 Assume that 'a & J • This means that there exists a function g G J such that
 the condition (**) is fulfilled.

 Let D i = (x>i +5f)_1(l) and Aa = <7-1(a), where a is a value assumed by g. It
 is easy to see that

 (1) XA-inA £ J .

 Now, we shall show that

 (2) Did AC L(A).

 Infer that

 (3) Di = (A0n v4) U (i4i'i4).

 Let now xQ G DļC'A, and let k0 be a positive integer such that BXo C <pXo(Dļ , jfc),
 for each k > k0. This means that lim*-^ XVxo(Dltk)nBxo = Xbxq and so x0 G £(I>i).
 Infer that Xa^a £ J and by (3) and Lemma 2, x0 G L(A0 D A ), which means,
 according to Lemma 3, that Xo G L(A). Thus condition (2) is true.

 It is not difficult to verify that

 A = (A-! D A) U (Ü! n A)

 and so ((2)) A'L{A) C A-X D A. Consequently |x>i'L(/i)| < ¡Xa^haI- From the
 above and according to (1) we deduce that Xa'L(A) £ J-

 The second part of the proof is similar to the proof of Theorem 7.
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 Now we present the fundamental properties of a ( Bs,j , $s) -density points.

 Let S be some m-ring and J an m-ideal of S.

 THEOREM 9. the following conditions are fulfilled:

 (1) If xaì Xb E S and xaab € J, then L(A) = L(B).

 (2) If X a , XB G S , then L(A n B) = L(A) n L(B).

 (3) L(<f>) = 4>, L(X) = X.

 Proof. It is evident that the conditions (1) and (3) are fulfilled.
 We shall show that condition (2) takes place. Let us observe that, by Lemma

 3,

 L(Af)B) C L(A)nL{B).

 Let now xo G L(A) D L(B) and {tk} be an arbitrary strictly increasing sequence
 of positive integers. There exists a subsequence {st)k} of {tk} such that:

 3 - = XBiq

 and there exists a subsequence {zStk} of {st*} such that

 3 ~ = XB'°"

 It is not difficult to see that

 3 - X<pxo(A,z.tk)nBxo = Xbxq •

 Put

 A' = {x : i^oX^o^>tk)nBIO(x) = 1}
 and

 B'={x: = I}-

 Hence BXo'(A' D B') G Jj, which implies that

 £*o'{x ' jJîîS, X.v>xo{A,z,tk)c'vxQ(B,zStk)r'Bxo{.x) = 1} G J j

 and so

 (fclimX^o(^B,Zatt)nBIO)ł - XBx o G J .
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 Consequently, from the arbitrary choice of we may infer that Xo G
 L(A n B).

 The theory built so far allows one to expect that relatively simple constructions
 will lead to the building of some topology. However, in order to make its creation
 possible, it is necessary to introduce additional assumptions. To avoid dispensable
 complications, we shall accept, as our assumption, a comparatively simple (and
 self-evident) condition - up to the end of the article we shall constantly assume
 (this assumption also concerns the case of the notion of a "weak density point"
 introduced further) that we consider exclusively spaces X , operators $5 (and t/'s),
 m-algebras S , m-ideals J and families Bs,j, such that the following condition is
 satisfied:

 if {/IaJaça is a family of sets such that xax £ S and

 A' C LbSij,<í!S{A ) for each A G A, then X(JAeA .4A £ S.

 THEOREM 10. Let X be an arbitrary set. Then the family

 T={A<¡ A(S) : A C LBsJ,ts(A)i

 is a topology in X. (We say that T is a (Bs,j,$s) -density topology).

 We say that the density theorem takes place if XaalBs *s(a) G J, for every
 A e A(S).

 LEMMA 5. If the density theorem takes place, then XlBs łs(,4) £ S, for
 every A such that xa € S.

 Proof. Since XnlrBs>i7i#s(i4) = A'(A'LBs Jt<ts(A)) and Xa'lBs j,*s(a) ejc
 S then XAnLBs jt*s(A) £ S. Consequently

 THEOREM 11. If the density theorem takes place, then V is open in a
 (B s, j, $s) -density topology if and only ifV = LBs jt$s(A)'B, for some A and B
 such that xa ě S and xb € J .

 The theory presented above gives a method to define density points in more
 abstract spaces. We have examples applying this theory in the case of second
 countable m-dimensional manifolds. The methods of construction are connected
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 with topology, measure theory and algebra. The density topologies obtained pos-
 sess many interesting properties. Since the constructions are long, we omit these
 examples.

 Many of the considerations (but not all) are true if instead of condition 2 of
 the definition of the family $5 we write:

 2'. If A,B € ^(5) and A C B, then <px(A,n ) C <px(B,n) for n = 1,2,...
 (x € X) and if C is a set such that xc £ J , then <px( X'C, n) = X'<px(C, n)
 for n = 1,2,... (iG X).

 The family <t>s for which condition 2' is fulfilled, we shall denote by tps- We
 say that a {Bs,j,ýs)~ density point is a weak density point (if Bs,j, tļ>s are fixed).
 Let us adopt as LW(A) the set of all weak density points of the set A. Then
 Lw : .4.(5) - > 2X we shall call weak density operator.

 We shall now investigate some properties of these objects.

 LEMMA 6. The operator Lw possesses the following fundamental properties:

 (1) If Xa,Xb € S and A C B, then LW(A) C LW(B).

 (2) IfxA, XB € S, then LW(A i~l B) = LW(A) D LW(B).

 (3) Lw(<1>) = <j> and LW(X) = X.

 THEOREM 12. Let X be an arbitrary set. Then the family

 Tw = {A e .4(S) : A C LW(A)}

 is a topology in X . (We call Tw the weak density topology.)

 Remark. Since every family fulfills condition 2'., every ( Bs,j , $s)_density
 topology is a weak density topology.

 THEOREM 13. Every set A such that xa € J îS boundary and closed in a
 weak density topology.

 Proof. We shall first prove that A is boundary. If A = <f>, then this fact is
 obvious. Let A ^ <f>. We shall show that any non-empty open set, in a weak
 density topology, does not include in A. Indeed, let <f> ^ B C A. Then B G Jj.
 This means that

 (1) yx(jB,n) D Bx € J j, for every x E X and n G N

 567



 To prove the boundary of A it suffices to demonstrate that LW(B) = <f>.
 Let xqÇL X and let {t^} be an arbitrary strictly increasing sequence of positive

 integers and {s^} a subsequence of {tk}- According to (1) we have

 If x0 e LW(B) then J - lim«-^ XVxo(B,n)nBxo = Xbxq and so xbX0 € J which
 is impossible, because BXo is (S, ¿7) -large set. The obtained contradiction proves
 that LW(B) = <ļ>.

 To finish, let us notice that G TWì i.e.

 (2) X'A C LW(X'A).

 In fact, let x G and {i^} be a strictly increasing sequence of positive
 integers. Assume that {stfc} = {¿it}- Thus

 <£*( X'A, st J C'BX = Bx'(px(A,stk), for every k € N.

 From the above equality it follows that

 #AUv*(4,sťJ c iz : fc_>0° Jim XVx(x'A,stk)nBx(z) = 1} k fc_>0°

 and so

 ~XBx' <

 This means that x 6 LW(X'A ) and so from the arbitrary choice of x we obtain
 (2).

 COROLLARY 1. If S includes all characteristic functions of singletons,
 then (X,TW) is a Tļ -space.

 COROLLARY 2. If J includes all characteristic functions of singletons ,
 then (X,TW) is not a separable space (we assume that in X there exists at least
 one (5, ¿f)-large set).

 In monograph [1] and in the paper [7] a lower density operator and an abstract
 density operator are considered.

 The following theorem is true with the additional assumption that the <r-algebra
 contains all singletons.

 THEOREM 14. Let X be an arbitrary set. Then every lower density operator
 is a weak density operator. ( Precisely , for a lower density operator L there exists
 S , J ' ýs and Bs,j such that L = Lw).
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 Proof. Suppose that E is a «r-algebra of subsets of X and L : E - ► E is a lower
 density operator. Let S be the family of all functions measurable with respect to
 E. (Then ^1(5") = E). Moreover let J = {consto} be the m-ideal of the m-ring S.
 Let us adopt Bx = {a;} as a set (£, ¿7")-large (for x G -X"). Put ipx(A,n) = L(A),
 for x G X, A G ./4(S) and n G N.

 Thus (px : .4(5) x N - ► ^4(5) and <px fulfills the conditions 1,2', 3,4, 5 for iļ>s-
 Now, we shall show that for every A G ^4(5) = E

 (1) L(A) = LW(A).

 Indeed, let x G L(A). Then <px(A, n) fl Bx = {®}, for n = 1,2, . . .. Consider an
 arbitrary strictly increasing sequence {i*} of positive integers and put {s^} = {tk}.

 Then

 lim XVx(A,»,.)nBx K - XBx K-+ OO K

 and so

 3 - Xvx(A,3tk)nBx = XBx,

 which means that x G LW(A).
 Now let x G LW(A) and assume x £ L(A). Let {tk} be an arbitrary sequence,

 strictly increasing of positive integers and {s^} an arbitrary subsequence of {tk}-
 Hence

 XVx(A,*tk)n Bx = consto (for k = 1,2, . . .),

 this means that

 - Xbx = -X{x} ^ J ;

 which contradicts the fact that x G LW(A). This contradiction shows that (1) is
 true and consequently the theorem has been proved.
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