Miguel Marano and Héctor Cuenya, Departamento de Matemáticas, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina¹

Heredity of Density Points²

For $t \in (0,1]$ let $\Omega_t^n =$

$$\{x = (x_1, \dots, x_n) \in \mathbb{R}^n : \text{ for each } i \in \mathbb{N} x_i \ge 0 \text{ and } \|x\| = \left(\sum x_i^2\right)^{1/2} \le t\}$$

and let g be a Lebesgue measurable real function defined on $\Omega^n = \Omega_1^n$, strictly positive almost everywhere and with the property that $g(rx) \leq g(x)$ if r < 1. We assume further that g is bounded and $g(x) \to 0$ as $x \to 0$. Let \mathcal{F}_n denote the set of such functions. If $S \subset \Omega^n$, then $S \cap \Omega_t^n$ is denoted by S_t . Let A be a Lebesgue measurable subset of Ω^n such that 0 is a density point of A; that is, $\frac{|A_t|}{|\Omega_t^n|} \to 1$ as $t \to 0$, where $|\Omega_t^n| = K_n t^n$. Our aim is to study the density of A at 0 with respect to the measure $\mu_g(E) = \int_E g$. We show that generally 0 is not a density point of A with respect to μ_g in the usual sense. If g in \mathcal{F}_n satisfies an additional condition, always valid in the case n = 1, then we prove that 0 is an upper μ_g -density point of A; that is, $\limsup \frac{\mu_g(A_t)}{\mu_g(\Omega_t^n)} = 1$ as $t \to 0$. Stronger and necessary conditions on both A and g for 0 to be a μ_g -density point of A are examined.

Given a function $g \in \mathcal{F}_n$ and $r, s \in (0, 1)$, we let M(g, r, s) = ess sup g(x)and m(g, r, s) = ess inf g(x) where $x \in \Omega^n_s \setminus \Omega^n_r$.

Theorem 1 Let 0 be a density point of a set $A \subset \Omega^n$ and let $g \in \mathcal{F}_n$. Assume further that there is an $\alpha > 0$ and a strictly decreasing sequence $\{t_k\}$ with $t_1 = 1$ and $t_k \to 0$ such that $\frac{M_k}{m_k} \leq \alpha$, where $M_k = M(g, t_{k+1}, t_k)$ and $m_k = m(t, t_{k+1}, t_k)$. Then 0 is an upper density point of A with respect to μ_g .

¹These authors were partially supported by the Consejo de Investigaciones Científicas y Tecnológicas de la Provincia de Córdoba.

Ams subject classification: 28A10.

Key words: Lebesgue measurable set, density point, radial monotonic function, upper density point.

²Dedicated to the memory of Jorge Smith

Proof. If the Theorem is not true, then there is an $\epsilon > 0$ and a j such that $\mu_g(\Omega_t^n \setminus A) > \epsilon \mu_g(\Omega_t^n)$ for all $t \in (0, t_j]$. Therefore for k > j

$$\begin{aligned} \alpha |\Omega_{t_k}^n \setminus A| &= \alpha \sum_{h=k}^{\infty} |\Omega_{t_h}^n \setminus \Omega_{t_{h+1}}^n \setminus A| \ge \sum_{h=k}^{\infty} \int_{\Omega_{t_h}^n \setminus \Omega_{t_{h+1}}^n \setminus A} \frac{g}{m_h} = \\ \int_{\Omega_{t_k} \setminus A} \frac{g}{m_k} + \sum_{h=k+1}^{\infty} \int_{\Omega_{t_h}^n \setminus A} g\left(\frac{1}{m_h} - \frac{1}{m_{h-1}}\right) \ge \\ \epsilon \frac{\mu_g(\Omega_{t_k}^n)}{m_k} + \epsilon \sum_{h=k+1}^{\infty} \mu_g(\Omega_{t_h}^n) \left(\frac{1}{m_h} - \frac{1}{m_{h-1}}\right) = \\ \epsilon \sum_{h=k}^{\infty} \frac{\mu_g\left(\Omega_{t_h}^n \setminus \Omega_{t_{h+1}}^n\right)}{m_h} \ge \epsilon \sum_{h=k}^{\infty} |\Omega_{t_h}^n \setminus \Omega_{t_{h+1}}^n| = \epsilon |\Omega_{t_k}^n| \end{aligned}$$

which is a contradiction. \Box

The following example shows that the additional condition on g is an essential hypotheses in Theorem 1 for $n \ge 2$. Example

Example.

Let $t_k = \frac{1}{k}$ and $A(k) = \{re^{i\theta} : r \in (0,1], \ \theta \in [0, \frac{\pi}{2} - \frac{1}{2^k}]\} \cap [\Omega_{t_k}^2 \setminus \Omega_{t^{k+1}}^2],$ and let $A = \bigcup_{k=1}^{\infty} A(k)$. It follows immediately that 0 is a density point of A. Let $B = \Omega^2 \setminus A$ and $B(k) = B \cap [\Omega_{t_k}^2 \setminus \Omega_{t_{k+1}}^2].$ We define

$$g(x) = \begin{cases} \frac{1}{k} & \text{if } x \in B(k) \\ \\ \frac{B(k)}{2k|A(k)|} & \text{if } x \in A(k) \end{cases}$$

It is clear that $g \in \mathcal{F}_2$ and $\mu_g(A_t) < \mu_g(B_t)$ for any $t \in (0, 1)$.

On the other hand the condition of Theorem 1 is fulfilled in the one dimensional case. Indeed take $t_1 = 1$, $t_2 = \inf\{x \in \Omega^1 : \frac{g(t_1^-)}{2} < g(x) \leq g(t_1^-)\}$ and generally $t_{k+1} = \inf\{x \in \Omega^1 : \frac{g(t_k^-)}{2} < g(x) \leq g(t_k^-)\} < t_k$. Since $g(t_k^-) \leq \frac{g(t_1^-)}{2^{k-1}}$, it follows that $g(t_k) \to 0$ as $k \to \infty$ whence due to the form of $g, t_k \to 0$ as $k \to \infty$. Besides $\frac{M_k}{m_k} \leq 2$ for any k.

Theorem 2 Let 0 be a density point of $A \subset \Omega^n$. A necessary and sufficient condition for 0 to be a μ_g -density point of A for any $g \in \mathcal{F}_n$ is that $|A_t| = |\Omega_t^n|$ for t small enough.

Proof. The condition is obvious sufficient. To prove the necessary part, assume that $|B_t| > 0$ for all t, where $B = \Omega^n \setminus A$. Then B_t has density points in the interior of Ω_t^n . Let V_1 be a (r_1, t_1) -radial neighborhood of a density point of B in the interior of Ω_1^n ; that is, if $x \in V_1$, then $r_1 < ||x|| < t_1$ and $\lambda x \in V_1$, $\frac{r_1}{||x||} < \lambda < \frac{t_1}{||x||}$, where $0 < r_1 < t_1 < 1$. It is easy to see that we can also take V_1 in such a way that $|B \cap V_1| - |A \cap V_1| = c_1 > 0$, $|V_1| < |\Omega_{t_1}^n \setminus \Omega_{r_1}^n \setminus V_1|$. We now apply a recurrent procedure to construct radial neighborhoods V_i assuming that V_1, \ldots, V_{i-1} are given, $i = 2, \ldots$. For $s_i = \min(\frac{1}{i}, r_{i-1})$ let V_i be a (r_i, t_i) -radial neighborhood of a density point of B in the interior of $\Omega_{s_i}^n$ where $t_i \leq s_i$ and $|B \cap V_i| - |A \cap V_i| = c_i > 0$, $|V_i| < |\Omega_{t_i}^n \setminus \Omega_{s_i}^n$ where $t_i \leq s_i$ and $|B \cap V_i| - |A \cap V_i| = c_i > 0$, $|V_i| < |\Omega_{t_i}^n \setminus \Omega_{r_i}^n \setminus V_i|$. Next a function $g \in \mathcal{F}_n$ will be defined. For $x \in (\Omega_1^n \setminus \Omega_1^n \setminus U_i) = \frac{(\prod_{i=1}^{i} c_i)}{2^i} \prod_{j=1}^{i} |(\Omega_{t_j}^n \setminus \Omega_{t_{i+1}}^n \setminus V_j)| < \frac{1}{2^i}$. So it is easy to see that the function g is in \mathcal{F}_n and to see that $\mu_g \left(A \cap [\Omega_{t_i}^n \setminus \Omega_{t_{i+1}}^n] \right) < \mu_g \left(B \cap [\Omega_{t_i}^n \setminus \Omega_{t_{i+1}}^n] \right)$ for all i. Hence 0 is not a μ_g -density point of A. \Box

A function $g \in \mathcal{F}_n$ is said to be of slow increase at the origin if there exists an $\alpha > 0$ and a $\lambda \in (0,1)$ such that $\frac{M(g,\lambda t,t)}{m(g,\lambda t,t)} \leq \alpha$ for any $t \in (0,1]$.

Theorem 3 a) Let g be a function of slow increase at the origin. Then for any measurable set A with density 1 at the origin, 0 is a μ_g -density point of A.

b) In the one dimensional case the condition of slow increase at the origin is also necessary to obtain this result.

Proof. of a) Let $\lambda \in (0, 1)$. Since A has density 1 at 0, for t small enough $|A \cap [\Omega_t^n \setminus \Omega_{\lambda t}^n]| \ge \frac{|\Omega_t^n \setminus \Omega_{\lambda t}^n|}{2}$. Thus

$$\mu_g(A_t) \geq (1-\lambda^n)|\Omega_t^n| \frac{m(g,\lambda t,t)}{2}.$$

On the other hand, since $g(rx) \leq g(x)$ for all $r \in (0,1)$, ess sup $g(x) \leq M(g, \lambda t, t)$ for $x \in \Omega_t^n \setminus A$ and hence

 $\mu_g(\Omega_t^n \setminus A) \leq |\Omega_t^n \setminus A| M(g, \lambda t, t),$

whence $\frac{\mu_g(\Omega_t^n \setminus A)}{\mu_g(A_t)} \to 0$ as $t \to 0$. \Box

Proof. of b) Let $\lambda_{\nu} = \frac{\nu}{\nu+1}$ for $\nu = 1, 2, ...$ If g does not satisfy the condition of slow increase at the origin, then we can obtain, by an iterative procedure, a sequence $\{x_{\nu}\}$ with $x_1 = 1$, $0 < x_{\nu+1} < \frac{x_{\nu}}{2}$ and $\frac{g(x_{\nu+1})}{g(\lambda_{\nu}x_{\nu+1})} \ge \nu$. Let

$$\delta_{\nu} = \lambda_{\nu} x_{\nu+1} \frac{g(\lambda_{\nu} x_{\nu+1})}{g(x_{\nu+1})} + x_{\nu+1} (1 - \lambda_{\nu}) \le 2 \frac{x_{\nu+1}}{\nu+1}.$$

Then

$$\mu_g([x_{\nu+1}, x_{\nu+1} + \delta_{\nu}]) \ge g(x_{\nu+1})\delta_{\nu} \ge$$
$$\mu_g([0, \lambda_{\nu}x_{\nu+1}]) + \mu_g([\lambda_{\nu}x_{\nu+1}, x_{\nu+1}]) = \mu_g([0, x_{\nu+1}]).$$

Let $B = \bigcup_{\nu=1}^{\infty} [x_{\nu+1}, x_{\nu+1} + \delta_{\nu}]$. By the above estimate B does not have density 0 at the origin with respect to μ_g . On the other hand we show now that B has density 0 at the origin. Indeed for $\nu \ge k$ we have $\delta_{\nu} \le \frac{2}{k+1} \frac{x_{k+1}}{2^{\nu-k}}$. Then

$$\sum_{\nu=k}^{\infty} \delta_{\nu} \le \frac{4x_{k+1}}{k+1}$$

Pick $t \in (0,1)$. If $x_{k+1} + \delta_k \leq t \leq x_k$, then

$$\frac{|B_t|}{t} = \frac{\sum_{\nu=k}^{\infty} \delta_{\nu}}{t} < \frac{4}{k+1}.$$

If $x_{k+1} < t < x_{k+1} + \delta_k$, then

$$\frac{|B_t|}{t} < \frac{\sum_{\nu=k}^{\infty} \delta_{\nu}}{t} < \frac{4}{k+1},$$

whence $\frac{|B_t|}{t} \to 0$ as $t \to 0.\square$ For $n \ge 2$ we introduce polar coordinates (r, x') to express the points x of $\Omega^n \setminus \{0\}$. We set r = ||x||, and $x' = \frac{x}{r}$. Let $\Sigma = \{y \in \Omega^n : ||y|| = 1\}$.

Theorem 4 Let $g \in \mathcal{F}_n$ and set $\phi(r) = \int_{\Sigma} g(rx') d\sigma$. Then $\phi \in \mathcal{F}_1$. Moreover ϕ is of slow increase at the origin if for each measurable set A with density 1 at the origin, 0 is a μ_g -density point of A.

Proof. It is easy to show that $\phi \in \mathcal{F}_1$. Assume that $\phi(r)$ is not of slow increase at the origin. Then neither is the function (in \mathcal{F}_1) $r^{n-1}\phi(r)$, whence by Theorem 3 b) there is a set B in Ω^1 with density 0 at the origin such that

$$\frac{\int_{B_t} r^{n-1}\phi(r) dr}{\int_0^t r^{n-1}\phi(r) dr} \not\to 0 \text{ as } t \to 0.$$

If $\tilde{B} = \{x \in \Omega^n : ||x|| = r \text{ for some } r \in B\}$, then $|\tilde{B}_t| = \omega_{n-1}\mu_{r^{n-1}}(B_t)$, where ω_{n-1} is the surface area of Σ . Since the function r^{n-1} is of slow increase at the origin, it follows from Theorem 3 a) that

$$\frac{|\tilde{B}_t|}{|\Omega_t|} = \frac{\mu_{r^{n-1}}(B_t)}{\mu_{r^{n-1}}([0,t])} \to 0 \text{ as } t \to 0.$$

On the other hand $\frac{\mu_g(\tilde{B}_t)}{\mu_g(\Omega_t^n)} = \frac{\int_{B_t} r^{n-1}\phi(r)\,dr}{\int_0^t r^{n-1}\phi(r)\,dr}$ does not tend to 0 as $t \to 0.\square$.

References

- [1] I. P. Natason, Theory of functions of a Real Variable, Vol. 1, Ungar, 1961.
- [2] H. L Royden, Real Analysis, Macmillan, 1968.
- [3] H. Federer, Geometric Measure Theory, Springer Verlag, 1969.

Received September 17, 1990