Jan M. Jastrzębski, Instytut Matematyki UG, Wita Stwosza 57, 89-952 Gdańsk, Poland

On local characterization of almost continuous functions

The class $\mathcal C$ (of continuous real functions of a real variable), $\mathcal Con$ (of functions with connected graphs) and $\mathcal D$ (of Darboux functions) forming the sequence of inclusions

$$C \subseteq Con \subseteq D$$

can be characterized locally (see [1], [2]). The class \mathcal{A} of almost continuous functions in the sense of Stallings is to be characterized locally. This is one of the approaches to that problem.

Definition 1 A function $f:(a,b) \longrightarrow \mathbb{R}$ is said to be almost continuous at a point $x_0 \in (a,b)$ from the right side iff

- 1. $f(x) \in L^+(f, x_0)$, where $L^+(f, x_0)$ denotes the cluster set of the function f at the point x_0 ;
- 2. there is a positive ε such that for an arbitrary neighbourhood G of $f|_{[x_0,\infty)}$, arbitrary $y \in (\liminf_{t\to x_0^+} f(t), \limsup_{t\to x_0^+} f(t))$, arbitrary neighbourhood of the point (x_0,y) and arbitrary $t \in (x_0,x_0+\varepsilon)$ there is a continuous function $g:[x_0,x_0+\varepsilon] \longrightarrow \mathbb{R}$ such that $g \subseteq G \cup U$, $g(x_0)=y$, g(t)=f(t).

Similarly, we define almost continuity at x_0 from the left and we say that f is almost continuous at x_0 if it almost continuous at both sides.

This definition is good enough to get the following properties:

Property 1 A function $f:[a,b] \longrightarrow \mathbb{R}$ is almost continuous if and only if it is almost continuous at each point of [a,b]. (The interval [a,b] can be replaced by open interval (a,b)).

Property 2 The set of all points of almost continuity of any real function of a real variable is of the type \mathcal{G}_{δ} .

Property 3 If f is continuous at x_0 , then it is almost continuous at x_0 ; if f is almost continuous at x_0 , then it is connected at x_0 .

References

- [1] Bruckner A.M., Ceder J.G., Darboux Continuity, Jber. Deutsch. Math. Ver. 67 (1965), 93-117
- [2] Garret B.D., Kellum K.R., Characterization of connected functions, ibid 73 (1971), 131-137.