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 A Restricted Symmetric Derivative for Continuous

 Functions of Two Variables

 In this paper we are concerned with symmetric differences for real valued

 functions defined on the plane R2. If /(x, y) is defined on R2, the symmetric

 difference at (x,y) is

 A/(x, y; h, k) = f(x+h,y+k)+f(x-h,y-k)-f(x+h,y-k)-f(x-h,y+k).

 This difference is used to generalize second order partial derivatives as Qxļy =

 lim^jt-^o if / is C2, where lim/,,*-^ = L means for every
 e > 0 there is a 8 > 0 so that 0 < h,k < Ô implies - L < e. In

 Ash, Cohen, Freiling, and Rinne [1] is the following theorem.

 Theorem ACFR: If f(x, y) is a continuous function on R2 and

 i¡m MñBM> = 0
 h,k-*o 4 hk

 for all ( x,y ), then there are one- variable functions a and b so that f(x,y ) =

 a(x) + b(y).

 One question this led to is what happens if the ratio of h and k is

 controlled somehow in this limit. Specifically, fix a positive number r, and

 suppose we only consider differences where k > rh, which we will indicate

 by A r/(x, y; h, k ). By using certain one-dimensional partitioning properties,

 we will obtain the conclusion of Theorem ACFR for the restricted derivative

 limjt-^o . A simple example shows that these results do not hold

 for arbitrary functions. Let

 {1 0 -1 X X X = < > y y y
 0 X = y .
 -1 X > y
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 Then A /(x, y; h, k) - 0 eventually for all (x, y), yet / is not a function of x

 plus a function of y.

 First, a few remarks and definitions that will be used in the proof. It is

 easy to see that /(x,y) = a(x) + 6(y) on some rectangular box is equivalent

 to all symmetric differences equal to zero in this box. Sometimes it is easier

 to describe situations in terms of a box and its four corners rather than use

 x,y,h, and k, and we will use A B, where B is a box with center (x,y),

 in place of A/(x, y; h , k ). By top(B) and bottom(S) we will mean the top

 and bottom edges, respectively, of the box B. If B is a finite union of

 non-overlapping boxes {£,} "=1, then A B = £)"=i We say that B is an

 r-tall box if its height is at least r times its width. For a set A, Ac is the

 complement of A, and int(A) is the interior of A. A full symmetric cover of

 an interval (a, b) is a collection, 5, of subintervals of (a, b) so that for each

 x G (a, b) there is a ¿(x) so that 0 < h < 6(x) implies [x - h, x + h] € S.

 Theorem 1: If/(x,y) is continuous and lim inf*_>o Ar/(x,y;/i,fc)/4/iJfc >

 0 for all points (x, y), then every symmetric difference, A/(x, y; h, k), is non-

 negative.

 Proof: By showing that the theorem holds for /(x, y) + rjxy, where

 rj is an arbitrary positive number, we may then let approach zero and

 get the desired result, since 9d^gy - t¡. So, in the proof, we may as-
 sume that liminffc-^o Ar/(x,y; h, k)/4hk > r¡ > 0 for all (x,y). This gives

 Arf(x,y; h, k) > 0 for k sufficiently small. Let

 An = {(z, y)Ar/(x, y; h, k) > 0

 for allO < k < 1/n}. Then R2 is the countable union of such sets, and, since

 / is continuous, each An is closed. Applying the Baire Category Theorem,

 we get some An with nonempty interior. For any box B C int(An), AB > 0,

 since B is the finite union of r-tall boxes with height less than 1/n. By

 repeating this process, we get a dense open set satisfying
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 (*) if B is any box contained in a component, AB > 0.

 Let A be the union of all open sets satisfying (*). Note that the finite union

 of such sets also satisfies (*). If B is any box contained in a component of

 A, then, by compactness, B is contained in a finite union of sets satisfying

 (*), so the set A also satisfies (*), and is in fact a maximal set satisfying (*).

 If A is all of R 2, we are done. Otherwise, Ac is a nowhere dense closed set.

 Since A is maximal and / is continuous, Ac is a perfect set, and each point p

 of Ac is a limit point of Ac minus the vertical line through p. Again, by the

 Baire Category Theorem, int(Ac D An) is nonempty for some n, asa relative

 open subset of A°. Thus, we may pick a box S with the following properties:

 1)5(1AC^$

 2) if B C S is a box contained in a component of A, then AB > 0

 3) if B C S is an r-tall box with center in Ac, then AB > 0.

 We may assume that S is also r-tall. If AB > 0 for every B C 5, then

 S D Ac = $, so we may assume that AS < 0. We will show that the

 existence of such an S is a contradiction, and thus A is in fact all of R2.

 Let H be the horizontal bisector of int(S). If H fi Ac ci € H fi Ac

 closest to the center of S, let B' be the largest box contained in S with

 center ci, and let V' = S'B'. Since S is r-tall, so is B' and we have

 ABi > 0. We continue the process. Suppose B i, ..., Bn-' have been selected

 with Vi = S' U¿=1 Bk, i = l,...,n - 1. Pick cn € H fi V„_i fi Ac closest

 to the center of Vn_i, let Bn be the largest box contained in the closure of

 Vn = S'y UJL.1 Bk- This gives a sequence of boxes, {Bn}, with A Bn > 0 for

 each n. If the closure of the union of the B'ns is all of 5, then AS > 0 and

 we are done. If not, let T C S be the box that is the closure of S minus the

 union of the B'ns. We set T = 5" if H fi Ac = $. To obtain AS > 0 and

 our contradiction, it remains to show that AT > 0. We have the fact that

 H fi int(T ) C A. We may assume that the two points where H crosses the

 boundary of T are also in A, since otherwise we simply pick concentric boxes

 T' C T that are slightly less wide than T, show that A T' > 0, and then use
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 the continuity of / to get AT > 0 also. Let U and L be the upper and lower

 halves of T. We show that AL > 0, a similar argument applying to U.

 We may assume that L is a rectangle of the form [0, a] x [0, 6]. Since

 top(L ) C A , there is a d > 0 so that [0, a] x [d, 6] is contained in a component

 of A. The set Z = {z0 < z < b and A B > 0 for all B C [0, a] x [z, 6]

 with top(B ) C top(L)} is nonempty since d G Z, and we let ß = inf(Z). If

 ß = 0, we are done, since this says A L > 0. For ß > 0, we will show that

 m = max(0, 2/3 - 6) G Z , thus contradicting the choice of ß. To show m G Z,

 we need only consider B that extend below the horizontal line y = ß. It will

 suffice to show that A[0, a] x [m, 6] > 0 since the same argument will apply

 to any B C [0, a] x [m, 6] with top(B) C top(L). Let E be the closure of the

 projection onto the x-axis of Ac fi [0, a] x (m, ß].

 For each x G E, define g(x ) = sup{ym < y < ß and (x, y) G Ac}, and

 let E' C E be the set on which g has upper right Dini derivate less than

 plus infinity or lower left Dini derivate greater than minus infinity (relative

 to E ). Then g is of generalized bounded variation (VBG) on E'. That is, E'

 is a countable union of sets on which g is of bounded variation. Thus almost

 every (in the sense of Lebesgue measure) horizontal line hits g E' in at most

 countably many points (Saks [3] p 223, 279). Pick m < fi < ß so that y = ß

 is such a horizontal line and let {<*„} be the countable level set of gE' . Since

 we can pick fi arbitrarily close to m, the continuity of / will give the desired

 result if we show that A[0,a] x [//, 6] > 0. Since A is dense, we may assume

 that a portion of y = /i is contained in some component of A.

 Let r = [0, a] x [//, 6] and suppose A = A < 0. We consider four types

 of points in (0,a).

 Type 1 If x E E and g(x) > /x, consider an r-tall box B of the form

 [x - h, x + /i] x [g{x) - k , y(x) + fc] with bottom(S) contained in y = fi. If

 top(B ) C [0, a] x [ß, 6] then A B' > 0 where B' = [x - h, x + h] x [//, 6], since

 the box formed by B''B is contained in [0, a] x [ ß , 6]. If top(B ) is below the

 line y = ß, by making h sufficiently small we have [x - h, x + h] x [<?(x) + k, ß]
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 contained in a component of A, by the definition of g and the fact that Ac

 is closed, and thus having a nonnegative symmetric difference. In either

 case we have a ¿>(x) > 0 so that 0 < h < 8(x) implies AB > 0 for B =

 [x - h,x + h] x [ ļi , b ]. Let S(x) denote the corresponding set of intervals

 [x - h,x + h' for x of type 1.

 Type 2 If x G E and x = an for some n, by the continuity of /,

 we can pick 6(x) > 0 so that 0 < h < 6(x) implies AB < A/2n+3 for

 B = [x - h,x + h]x[ļi, b'. Let S(x) denote the corresponding set of intervals

 [x - h,x + h] for x of type 2.

 Type 3 If a: € E and g(x) = /z but x £ {a„}, then g has oo and - oo as

 upper right and lower left Dini derivates respectively. For z < x let £(z, n )

 be the line through the point (z, //) with slope nr, and let x'n = sup{z <

 x£(c,n ) H Ac fi ([x,a] x [/*,/?]) = $ for all c < z}. Pick yn > x so that

 ( Vn,g(yn )) 6 £(x'n,n). Since Ď+g(x ) = oo, we have x'n ^ x and x'n Î x, and

 if B is any nr-tall box centered at (yn, y(y„)) with bottom(B) contained in

 y = ļi, then AB > 0 as long as the right edge of B does not extend beyond

 x = a. Thus we may pick n large enough so that yn - x < h < yn - x'n

 implies AB > 0 for B of the form [y„ - h,yn + h] x [/x, 2 g(yn) - /■*]• Since

 there are no points of A° above B that are below the line y = ß, AB' > 0

 for B' = 'yn - h,yn + h' X [/z, b'. Now do the same for z > x using lines

 of slope -nr to create corresponding intervals centered at yn < x. Let S(x)

 denote the collection of such intervals [yn - h, yn + h] and [yn - h,yn + /i] for

 x of type 3.

 Type 4 If x 6 (0, a)'E, let ¿(a:) be the distance from x to E. Then 0 <

 h < S(x) implies AB > 0 for B = [x - h, x + h] x [/z, ß ] since the interior of B

 is contained in a component of A. Thus AB' > 0 for B' = [x - h, x + h] x

 since A[x - h,x + h] x [ß, 6] > 0 by the definition of ß. Let S(x) denote the

 corresponding set of intervals [x - h, x + h] for x of type 4.

 Each point in (0,a) is then one of the four types described above. Ob-

 serve that if Ii,..., In is a collection of nonoverlapping intervals in UIg/5'(x),
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 then^"=1 A(l¿ X [fi, 6]) > A/4. Pick t e (0,a) and £ > 0 so that the portion

 of the line y = fi above I = (t - Ç,t + £) is contained in a component of

 A. Every x in this interval is then type 1 or 4, so for each x € J, there

 is a £(x) so that 0 < h < S(x) implies A[x - h,x + h] x [/i, 6] > 0. The

 intervals of Uig/5(x), that are contained in I form a full symmetric cover of

 I. By Lemma 3.1 in Thomson [2], for each 0 < 7 < C except for a set with

 countable closure, [t - 7, t + 7] can be partitioned by elements of the full

 symmetric cover, and we have A[ť - 7, t + 7] x [/¿, 6] > 0. By the continuity

 of /, the above inequality is then true for all 0 < 7 < £. Since we can apply

 this argument to any subinterval of I, A J x [//, b] > 0 for any J C I. In

 particular, A[ť, t + 7] x [//, 6] > 0 for all 0 < 7 < Let G be the set of all

 r > t so that, for all y in some neighborhood of r, [i, y] can be partitioned

 by nonoverlapping intervals I' , .., /„ satisfying

 (**) each Ii 6 Uxg/5(x) for i > 1 and I' € U zeiS(x) or Ali x [/*> b] > 0.

 Let s be the supremum of G. We wish to show that s = a, which gives

 A[ť, a] x [fi, ß] > A/4 by the continuity of /.

 Suppose s < a. If s is type 1, 2, or 4, then Gfl(í-Í(i), s) contains some

 interval J. For each z 6 J, [ z , 2s - z] G S (s) so [ť, 2s - z] can be partitioned

 by intervals satisfying (**), contradicting the choice of s. If s is type 3, there

 are intervals in S(s) centered at some y > s with left endpoints covering an

 interval of the form K = (s - e, s ). Pick an interval J C G fi K. Then for

 each z E J, [z,2y - z] G S (s) so [ť,2y - z] can be partitioned by intervals

 satisfying (**), again contradicting the choice of s.

 A similar argument applies to [0, ť] giving A[0, ť] x [/x, ò] > A/4 and

 A = A[0,a] x [/i, b] > A, a contradiction. Since we can pick fi arbitrarily

 close to m, A[0, a] x [m, 6] > 0. This finishes the proof of Theorem 1.

 An immediate consequence of Theorem 1 is the following.

 Corollary 1: If f(x , y) is continuous and lim*-»o Ar/(x, y; h, k)/4hk =

 0 for all (x, y), then there are one- variable functions a and b so that /(x, y) =

 a(x) + 6(y).
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 Proof: By Theorem 1, all symmetric differences for both / and - f

 are nonnegative. Thus all symmetric differences for / are equal to zero. As

 noted above, this is equivalent to the conclusion of the corollary.

 The question remains open as to what happens if further restrictions are

 placed on the limit. For example, what if rh < k is replaced by r < k/h < R,

 so that the ratio is controlled in both directions, and, as C. Freiling queried

 at the 14th Summer Symposium, what can be said if h = k?
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