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 ON COMPLETENESS

 Dedicated to John C. Oxtoby

 When introducing the completion of a metric space, Hausdorff stated that
 this notion is analogous to Dedekind's completion of the rational numbers. At
 first glance, the analogy here appears to be somewhat superficial, since the usual
 constructions utilizing Cauchy sequences and Dedekind cuts, respectively, exhibit
 no readily discernible similarities. In this article we shall give depth to HausdorfF's
 statement by revealing an analogous construction underlying these notions.

 Let C be a family of subsets of a set of points X. The nonempty sets in C are
 called regions. A subset of a region A which is itself a region is called a subregion
 of A.

 Definition. Let = (V>n : n 6 N) be a sequence of mappings from C to C
 having the property that, for every region A and every n € N, ipn(A) is a subregion
 of A. (In the case that 0 € C, we take = 0 for every n.) Then the triple
 X = ( X,C , 'ř) is called a basic system.

 When defining tpn(A) for regions A in examples below we shall assume a given
 well-ordering of C.

 Example A. Let ( X , d ) be a metric space and let C be the family of all open
 sets in X. For each region A and each n 6 N we define ipn(A) = A whenever
 diam(v4) < otherwise, rļ>n(A) is defined to be the first subregion B of A (relative
 to the assumed well-ordering of C) with diam(ß) <

 We note that completeness (in the sense of Cauchy) of a metric (or pseudomet-
 ric) space X has the following equivalent characterization (cf. [7]):

 (m) X is complete if and only if every descending sequence of closed spheres in
 X whose diameters converge to 0 has a nonempty intersection.

 Example B. Let (F, <) be an ordered set having no smallest or largest elements
 and containing a denumerable everywhere dense set Q = {rn : n € N} and let
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 {/m : m G N} be an enumeration of ail open intervals of Y with endpoints in Q.
 Let X be a subset of Y and let C = {Cm : m € N}, where Cm = Imf' X. For
 each n G N and each region Cro, define iļ>n (Cm) = Ck, where k is the smallest
 index greater than or equal to m such that Ck is a subregion of Cm and Ik is a
 subinterval of Im which contains at most one of the elements rj,ra, . . . ,rn+i and
 none of these elements is an endpoint of Ik-

 A subset C of an ordered set Z is called a generalized interval in Z if it satisfies
 the condition: For all elements x, y € C, z G Z, if x < z < y then z G C. Note
 that if I is a generalized interval in an ordered set Y and X is a subset of Y then
 inX is a generalized interval in X] in particular, the sets Cm above are generalized
 intervals in X.

 We note that completeness (in the sense of Dedekind) of the ordered set X
 above has the equivalent characterization

 (o) X is complete if and only if every descending sequence of bounded, closed
 intervals in X has a nonempty intersection.

 The analogous characterizations (m) and (o) suggest that a general notion of
 completeness, based on descending sequences of sets and nonempty intersections,
 will effect a unification of the aforementioned metric and order completion results.
 It is of some interest to note that our approach to the unification of metrical and
 order-theoretic analogies and our approach to the unification of topological and
 measure-theoretic analogies have a game of Mazur aa their common origin, (cf.
 [4], [5], [6])

 Definition. A basic system is called a complete system if it satifies the condi-
 tion

 (6) Every sequence (v4n)n6N of regions, for which the sequence (i/>n(<An))neN is
 descending, has a nonempty intersection.

 Example C. Let (X, d) be a metric space, let C be the family of all closed
 spheres in X , and, for each region A € C and each n G N, let rļ>n(A) be the first
 subregion B of A with diam(fî) < jk Then the characterization (m) is equivalent
 to the condition (£).

 Example D. Let (Y, <) be an ordered set with no smallest or largest elements
 and containing a denumerable everywhere dense set, let X be a subset of Y, let C be
 the family of all bounded, closed intervals in X , and let iļ>n be the identity mapping
 for each n G N. Then the characterization (o) is equivalent to the condition (£).
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 Example E. Let (X, T) be a topology, let C be the family of all closed sets,
 and let V*n be the identity mapping for each n G N. Then the condition (S) is
 equivalent to the topology being countably compact.

 The subsets of a set X are classified relative to a given family C in the following
 manner: A set is a singular set if every region has a subregion disjoint from the
 set. A set is a meager set if it is representable as a countable union of singular
 sets. A set which is not meager is called an abundant set. In the case that (X,C)
 is a topology, the singular, meager, and abundant sets coincide with the nowhere
 dense, first category, and second category sets. Generalizing the notion of a Baire
 topology, we say (X,C) is a Baire family if every region is an abundant set.

 The importance of complete systems stems from the following set-theoretical
 formulation of the Baire Category Theorem (cf. [6] p. 71).

 Theorem 1. If X is a complete system then (X,C) is a Baire family.

 This theorem encompasses numerous topological versions of the classical Baire
 Category Theorem, including the following examples of complete systems.

 Example F. (X, d ) is a complete metric space and C is the family of all open
 sets in X. For each region A and each n G N we take ýn{A) to be the first region
 B in C whose closure is contained in A and with diam(ß) <

 Example G. ( X,C ) is a countably compact, regular topology (cf. [1] 29.25).
 For each region A and each n G N, we use the assumed regularity to define iļ>n{A)
 to be the first region in C whose closure is contained in A. The satisfaction of
 the condition (¿) results from applying the assumed countable compactness to the
 sequence of closures of the sets ipn(An).

 Example H. ( X,C ) is a locally compact, regular topology (cf. [1] 31.27). For
 each region A and each n G N we define ifin{A) to be the first region in C whose
 closure is a compact subset of A.

 Example I. ( X,C ) is Smirnov's deleted sequence topology; i.e. X = R and C
 consists of all sets A representable in the form A = G - E, where G is an open
 set in the usual topology for R and E C : m G N}. For each such region A
 and each n G N we define if>n(A) to be the first open interval B whose closure is
 contained in A with length 1(5) < We note that this topology is not regular,
 not countably compact, not locally compact, etc. (cf. [8] No. 64).

 Example J. (X,C) is the countable complement topology for an uncountable
 set X and all the mappings xļ>n are the identity mapping (cf. [8] No. 20).
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 We now show how a given basic system X = (X,C, 'ř) generates a second basic
 system X * = 'ř*) by means of a purely set-theoretical construction.

 Definition. A sequence (Em)m^ n of regions is called a regular sequence if it
 satisfies the condition

 Em+ 1 C tpm(Em)

 for every m € N.

 We note that every regular sequence is necessarily a descending sequence. We
 also note that every region A contains a regular sequence; e.g. take Ei = A, E2 =
 tļ>2iļ>i(A), S3 = and, in general , Em = V'mV'm-iV'm-i • -fafaýi (4)
 for m > 2.

 Definition. Sequences of sets (Em)mą n and (Fm)m€N are said to be interlaced
 if (Vn)(3m)(£m C Fn) and ( Vm)(3k)(Fk C Em).

 Starting with a given basic system X = (X,C, 't) we identify regular sequences
 of regions which are interlaced and thereby obtain an equivalence relation on the set
 of all regular sequences. The equivalence class containing a given regular sequence
 (^m)m€ N be denoted by [(i?m)]. The set of all such equivalence classes is
 denoted by X*. For each A € C we define

 A* = {[(f?m)] € X* : (3m € N )(Em C A)};

 that is A* consists of all equivalence classes x* G X * having the property that
 for any representative element (Em)mç n in z*, there exists an index m such that
 Em C A. For each A 6 C and each n € N we define

 W) = (MA ))•

 Placing C* = {A* : A € C} and = (0* : n € N) we then have a well-defined
 basic system X * = (X*,Cm, ^*).

 Definition. A regular sequence (Em)m €n of regions in C is said to converge to
 a point x € X if its intersection is {x}; in which case x is called the limit of the
 given sequence.

 Definition. A basic system X is called a point-regular system if the following
 conditions are satisfied:

 (1) Every point is the limit of a regular sequence of regions.
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 (2) If (Em)mç N is any regular sequence of regions converging to a point x and A
 is any region containing x then there exists an index m such that Em C A.

 Note that condition (2) implies any two regular sequences converging to the
 same point aure interlaced.

 Example A is point-regular with each point x € X being the limit of the regular
 sequence (£m,x)m€N of open spheres

 Em,x = {y e X : d{x,y) < ^}.

 Example B is point-regular with each point x G X being the limit of the regular
 sequence (EmiX)m€ n of regions

 Em,x ~ (Om.ar» ^m,®) ^ X

 defined inductively as follows: ai<x is the first element in the enumeration of
 Q with index j' > 2 satisfying rj , < x and 6i(X is the first element of Q with
 index k'> 2 satisfying x < ; for m > 1, am>x is the first element rJm with index
 jm > jm- 1 satisfying am-i<x < fjm < x and bm<x is the first element r*m with index
 km > fcm-1 satisfying x < rkm < 6m-i,x- We then have iļ>m(EmļX) = Em>x for all
 m € N and all x € X.

 The proof of the following fact is straight-forward.

 Lemma. If X is point-regular, A* and B* are regions in C*, and A * C B * then
 ACB.

 Definition. A basic system X is called idempotent if each mapping ipn is
 idempotent; i.e. if t/>n0n = 0n for every n 6 N.

 The systems of both Example A and Example B are idempotent.

 Theorem 2. If X is a point-regular, idempotent system then X* is a complete
 system.

 Proof. Suppose (j4*)„€n is a sequence of regions in C* for which the se-
 quence (V,ń(^n))„€N is descending. By virtue of the foregoing lemma, the se-
 quence (V'm(-^m))m€ N is a descending sequence of regions in C. According to
 the idempotence assumption, this sequence is a regular sequence. It follows that
 [(V>m(-<4m))] € for every n € N. This implies the intersection of the sets yt*
 is nonempty.

 Definition. A complete system (Y,T>, $) is called a completion of a basic
 system (X,C, *P) if there exists a one-to-one function i : X - ► Y having the
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 property that for every region B € T> there exists a region A € C such that
 i(A) C B.

 Theorem 3. If X is a point regular, idempotent system then X* is a completion
 of X.

 Proof. For each point x € X we choose a regular sequence (EmiX)mą n con-
 verging to x and define i(x) = [(^m,x)]- The function i is a well-defined one-to-one
 mapping of X into X*. Using condition (2) in the definition of a point-regular
 system it is readily seen that ¿(A) C A * for every region A EC.

 Application 1. Hausdorff's completion of a metric space.

 We start with a given metric space (X, d) and specialize Theorem 3 to Example
 A. For elements x* = [(£„,)], y* = [(Fm)] in X * we define

 d*(x*,y*) = lim d(Em,Fm).
 TTI-+00

 (a) (X*, d') is a pseudometric space.

 Proof. The sequence (d(Em, Fm))mç n is a monotone increasing sequence of
 non-negative real numbers bounded above by y 2) + 2, where Xļ € Eļ and
 3/2 € Fļ. The limit thus exists and, because of the interlacing, is independent of
 the representative sequences (£m)m€N and (-Fm)mgN selected. We obviously have

 <T(x*,x*) = 0 and iT(x*,y*) = d*(y*,x*)

 while the triangle inequality

 ť r(x*,y')<<r(x*,z') + ď(z%y *)

 is a consequence of the inequality

 d(Em , Fm) < d(Em , Gm) + d(Gm,Fm) + diam(Gro).

 (b) The mapping t : X - ► X* is an isometry.

 Proof. Suppose (£m)m€N, (Fm)mçn are regular sequences of regions in C
 converging to points x, y € X, respectively. For each index m > 1 and any points
 u 6 Fm , v € Fm we have

 2
 V ) < u) + d(u, v ) + d(v, y) < d(u, v) +

 m - 1
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 whence
 2

 d(x,y) - - - 7 <d(uìV)
 m - i

 This implies

 d{x,y)
 m - 1

 since X 6 Em and y E Fm. Taking limits yields

 <T(t(x),¿(í/)) = d(x,y)

 (c) If 5" is an open sphere in X* then there is a region A G C such that A* - S.

 Proof. Let S = {y* G X* : d*(x*,y*) < r} be an open sphere in X* with
 center x * = [{£m)] in X *. Set

 A = {J{CeC:i(C)cS}.

 Since A is an open set in X , we have only to show A is non-empty to establish
 that A is a region in C.

 Choose m G N so that diam(£m) < Suppose u is any point of Em. Let
 (<-*„)„€ N be a regular sequence of regions in C converging to u. Then there exists
 no € N such that no > m and Gn C Em for all n > no- For such n, if s € En and
 t € Gn then s,t 6 Em and accordingly d(s,t) < This implies

 <r(*V(u)) = <r ([(£„)], [<Gn)]) = sup d(En,Gn) < r.
 n>no

 Hence, i(u) is an element of S. We thus see that, for C = Em, we have t(C) C S.
 We conclude A is a region in C.

 Assume z* = [(Fm)] € A*. Then there exists m € N such that Fn C A, and
 consequently t(Fn) C S , for all indices n >m. For such n, choose a point w € Fn.
 Let (Gj)jç n be a regular sequence of regions in C converging to w. Then there is
 an index jn > n such that Gj C Fn for all j > jn. Because i(w) is an element of

 lim d(Ej,Gj) = d*(x*,i(w)) < r.
 j- ► OO

 For each n > m and every j > jn we have d(En, Fn) < d(Ej,Gj), whence
 limn^oo d(En, Fn) < r. Therefore, z* G S.

 Conversely, assume z * = [(Fm)] G S. Let q = d*(x*,z*). Choose m0 G N so
 that diam(Fmo) < Suppose u is any point of Fmo and let (Gj)j^n be a regular
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 sequence of regions in C converging to u. Then there is an index jo > mo such that
 Gj C Fmo for all j > jo. For these indices j,

 d(E¡,G¡) < <«ą,Fj) + <^Gi) + di.m(f'i)
 r - o r - q

 ¿ «+HT + Hr<r-
 Hence,

 cT(x*,i(u)) = ļim d(Ej,Gj ) < r.
 J- +00

 For every point u 6 Fm 0 we thus have i(u) 6 S. This means Fmo C A. Therefore,
 z* € A*.

 We conclude A* = S.

 (d) (X*, ď) is complete.

 Proof. Let (Bp)p€ n be a descending sequence of closed spheres in X * whose
 diameters converge to 0; say

 Bp = {»• 6 X- : dr(xļ,f) < r,}

 where xļ € X* and rp > 0. In view of the characterization (m) we have only to
 establish fļ£Li -Bp ^ 0.

 Choose an increasing sequence (pn)n€ n of natural numbers such that diam(BPn)
 < - for each n € N and set

 n

 S. = {s' e X • : < -v.}.
 According to property (c), for each n € N there is a region An in C with A* = Sn. If
 u,v G An then t(u), ¿(u) G Sn and, 1 being an isometry, d(u , v ) = ď(i(u), í(w)) <
 Therefore, y>„(j4„) = An for every n.

 The sequence ( Sn)neN is a descending sequence of regions in C* with iļ>*(Sn) =
 Sn for each n G N. By virtue of the completeness of £*, there exists an element of
 X" which belongs to every set Sn and hence belongs to every set Bp.

 (e) The metric space induced by the pseudo- metric space (X*, ď) is Hausdorff's
 completion of ( X , d).

 Proof. A completion of a pseudometric (resp., metric) space (X, d) is a com-
 plete pseudometric (resp., metric) space having a dense subset isometric to X and
 such completions are uniquely determined up to isometries. By virtue of prop-
 erty (c), (X*,d*) is a completion of (X,d). The metric space induced by the
 complete pseudometric space ( X*,d *) (by identifying elements x*, y* € X* with
 d*(x*,y*) = 0) is a complete metric space having a dense subset isometric to X
 and is isometric to Hausdorff's completion of (X, d).
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 Application 2. Dedekind's completion of the rational numbers.

 We start with an ordered set (X, <) in the context of Example B with Q C X.
 For elements x* = [(£„,)], y * = [( Fn )] in X * we define

 X * <* y* (3m)(3n)(Vu € Em)(Vv € Fn)(u < u).

 (a) (X*, <*) is an ordered set.

 Proof. It is a simple matter to verify the relation <* is well-defined, irreflexive,
 and transitive. It remains to show that, for any elements x*,y* G X*, either
 x* <* y*, y * <* x*, or x* - y*. We assume neither x * <* y* nor y* <* x* holds.
 Then for all natural numbers m, n we have Em fi Fn 0.

 Suppose n € N is given and Fn = (r,s) D A', with r,s 6 Q. Let r = rni and
 s = r„2 in the enumeration of Q. Place n0 = max{n,ni,n2} and let xļ>no(Fno) =
 Jno D X, where Jno = (r„3,rn4) for r„3,rn4 enumerated elements of Q. From the
 inclusions Fno+i C 0„o ( Fno ) C 7^ C Fn and the fact that none of the elements
 ri,r2, . . . ,rno+i is an endpoint of we obtain r < rn3 < r„4 < s and Fn 0+i C
 (r„3,rn4). Place m0 = max{n0, n3, n4} and let ipmo(Emo) = 7mo n X, where 7mo =
 (p, q) with p, 9 € Q. Suppose we assume r 6 7mo. Then, since 7mo contains at
 most one of the elements rx, r2, . . . , rmo+1, we must have r„3 £ 7mo. The inclusions
 £m0+i c ipm0(Em0) C (p, r„3 ) then yield the contradiction Emo+ì n Fmo+1 = 0.
 We thus see r £ 7mo. Similarly, s £ 7mo. Now, (p, ç) H (r, s) ^ 0, r £ (p, ç), and
 s ^ (p, ç) imply (p, 9) C (r, s) and consequently Emo C Fn. Hence, for every n € N
 there exists m € N such that Em C Fn. Similarly, for every m 6 N there exists
 k 6 N such that Em C Fn. Similarly, for every m € N there exists À: € N such
 that Fk C Em. We conclude x* = y*.

 (b) The mapping 1 : X - ► X* is an isomorphism.

 Proof. Suppose x,y G X and x < y. Let t(x) = [(7?m)] and i(y) = [(T^,,)],
 where (Em)me n and {Fn)neN are regular sequences of regions in C converging re-
 spectively to x and y. Choose r, s,t G Q so that r<x<s<y<t. Then
 7 = (r,í)fiJÍ and J = (s, t) fl X are regions containing x and y. Accordingly,
 there exists m, n 6 N such that Em C 7 and Fn C J. This implies t(z) <* *(y).

 (c) The set t(Q) is everywhere dense in X*.

 Proof. Suppose x * = [(72m)], y * = [(T^)] are elements of X* with x * <*
 y*. Choose mo, no G N such that for all x 6 Emo and all y € F^ we have
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 X < y. The element a = sup Emo belongs to Q. Hence, there is an element rmi
 in the enumeration of Q such that a = rm,. Let m-i = max{mo,mi} and let
 c = sup ìpmì(Em2). We have c G Q and c < a. Choose r G Q satisfying c < r < a
 and let {Gk)k eN he a regular sequence of regions in C converging to r. Then there
 is an index ko such that Gì«, C (c,a). For all « € Emi+ i, all z G G ko, and all
 v £ Fmo we have u < z < v. This means x* <* t(r) <* y*.

 (d) If S is a nonempty open interval in X* with endpoints in i(Q) then A =
 i.~1(iS') is a region in C with A* = S.

 Proof. Let S = (r*,s*), where r* = [(C,-)], s* = [(Z)*)] are elements of i(Q)
 with r* <* s*. Let r,s G Q be such that r* = t(r) and s* = t(s). It being clear
 that A is a region in C, we have only to establish A* = S.

 Suppose x* = [(i?m)] is an element of A*. Then there exists m € N for which
 Em C A. Due to the regularity of the sequence (Em)mç n and the particular manner
 of defining the mappings xļ>n , we can find points p,q € Q and an index n > m such
 that r < p < q < s and En C (p, q). Let a, b G Q satisfy a<r<p<q<s<b.
 Since there are regular sequences of regions in the equivalence classes r* and s*
 converging to r and s, respectively, there axe indices j, k G N such that Cj C (a,p)
 and Dk C (q, b). From En C (p, q) we then perceive r* <* x* <* s *, so x* G S.

 Conversely, suppose x* G S. Then there exist j , k, m G N such that

 (Vu G Cj)(Vw G Em)(u < w) and (Vu> G Em)(Vv G Dk)(w < t>).

 In conjunction with the facts that r G Cj and s G D k, this implies Em C A. We
 conclude x* G A*.

 (e) (X*, <*) is the completion of ( X , <).

 Proof. In view of Cantor's theorem that any two complete ordered sets having
 neither smallest nor largest elements and containing everywhere dense, denumer-
 able subsets axe isomorphic, we have only to verify ( X *, <*) is complete.

 Suppose {Bm)mç n is a descending sequence of closed intervals Bm - [a^, i£j
 with aj^, b*m G X *. We show f|m=i ī£ 0- Without loss of generality, we assume
 all elements a£, are different, all elements 6J1, are different, and none of the elements
 rļ = i(rk) belongs to every set Bm, where (r*) is a fixed enumeration of the set
 Q-

 Choose mi G N so that rļ,rļ £ Bmi. Continuing inductively, we choose
 mk G N so that mk > rrik-i and rļ+ļ £ Bmk, for each k > 1. Choose sequences
 {Pk)kç N, {<lk)k€ N of elements of i(Q) satisfying the relationships

 mk < Pk < to*+i ^ "»k+i ^ 9* < TO|( *
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 We note that none of the elements r^rj, . . . ,rļ+ļ belongs to the open interval
 Sk = (pļ,ql), nor is any one of these elements an endpoint of S*. Then (Sk)kçN is
 a descending sequence of regions in C* with

 usk) = («>-'(&)))• = («-'(«or = Sk-

 By completeness of 3£*, there is an element of X * which belongs to every set Sk
 and hence belongs to every set Bm.
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