Special Subsets of the Real Line

We introduce two properties \mathcal{M} and \mathcal{F} of subsets of the real line \mathbf{R} concerning the control measure problem. We present a topological point of view on the problem. We also make remarks on above properties under the assumption $M A+\neg C H$.

We use the topological definitions in [E], the Boolean measure definitions as in [F], and the set theoretic ones in [J]. We use standard notation, in particular $M A, \neg C H$ abbreviate statements: Martin's Axiom, and negation of the Continuum Hypothesis. The symbols $\wedge, \bigvee, \triangle$ denote infimum, supremum and symmetric difference in Boolean algebras. By $\mathcal{P}(X), \mathcal{B}(X)$ we mean the power set of X and the set of all Borel subsets of $X \subseteq \mathbf{R}$.

Let \mathcal{A} be a σ-algebra of subsets of a set X. A Maharam submeasure ν on \mathcal{A} is a map from \mathcal{A} to $[0,1]$ which satisfies the following properties:
(1) $\nu(\emptyset)=0$.
(2) If $E, F \in \mathcal{A}$ and $E \subseteq F$, then $\nu(E) \leq \nu(F)$.
(3) If $E, F \in \mathcal{A}$, then $\nu(E \cup F) \leq \nu(E)+\nu(F)$.
(4) If $\left\{E_{n}\right\}_{n \in \omega}^{\infty}$ is a sequence of sets from \mathcal{A} and $\cap_{k \in \omega} \cup_{n \geq k}\left(E_{n} \Delta E\right)=\emptyset$, then $\lim _{n \rightarrow \infty} \nu\left(E_{n}\right)=\nu(E)$.
(5) $\nu(\{x\})=0$ for all $x \in X$.

An important problem of measure theory is the following control measure problem: for given a σ-algebra \mathcal{A} and a Maharam submeasure ν on \mathcal{A}, does there exist a probability measure μ on \mathcal{A}, such that for all $A \in \mathcal{A}, \nu(A)=0$ if and only if $\mu(A)=0$?

By \mathcal{C} and \mathcal{N} we mean the σ-ideal of strong measure zero subsets of the real line \mathbf{R} and the σ-ideal of universally measure zero subsets of \mathbf{R}, respectively; see [Mi] for definitions.

We introduce the following σ-ideal \mathcal{M} : A set $X \subseteq \mathbf{R}$ belongs to \mathcal{M} if and only if for every Maharam submeasure ν on the σ-field $\mathcal{B}(X)$ of Borel subsets of X (or equivalently on $\mathcal{B}(\mathbf{R})) \nu(X)=0$.

[^0]For every Maharam submeasure ν on $\mathcal{B}(\mathbf{R})$ the sets of ν submeasure zero form a σ-ideal I_{ν} (because (3) and (4) imply $\nu\left(\cup_{n \in \omega} E_{n}\right) \leq \sum_{n \in \omega} \nu\left(E_{n}\right)$). Hence $\mathcal{M}=\cap\left\{I_{\nu}: \nu\right.$ is a Maharam submeasure on $\left.\mathcal{B}(\mathbf{R})\right\}$ is a σ-ideal.

Lemma 1

$$
\mathcal{C} \subseteq \mathcal{M} \subseteq \mathcal{N}
$$

Proof. The second inclusion is obvious. We prove the first inclusion. For each $x \in X$ and any Maharam submeasure ν we have $\nu(\{x\})=0$ and $\{x\}=\cap_{n \in \omega} U_{n}$, where $\left\{U_{n}\right\}_{n \in \omega}$ is monotonically decreasing sequence of intervals. Hence for every $\epsilon>0$ there exists $\delta>0$ such that: if U is any subinterval of $[0,1]$ of diameter less then δ, then $\nu(U)<\epsilon$.

Therefore it is easy to see that any strong measure zero set is a Maharam submeasure ν zero set.

Remark 1 An example of a set from $\mathcal{N} \backslash \mathcal{M}$ answers the control measure problem.
Corollary 1 If $M A+\neg C H$ is true then:
(i) For every set $X \subseteq \mathbf{R}$ of cardinality $<2^{\omega} X \in \mathcal{M}$.
(ii) There exists a set $X \subseteq \mathbf{R}$ of cardinality 2^{ω} such that $X \in \mathcal{M}$.

Proof. For (i) see [L] and lemma 1. For (ii): the example of such X is the generalized Lusin set; see [L].

By a good σ-ideal I we always mean a σ-ideal on $\mathcal{B}(X)$, where $X \subseteq \mathbf{R}$, such that I contains all points of X and the quotient algebra $\mathcal{B}(X) / I$ is atomless and satisfies the countable chain condition.

We introduce a topology $\bar{\tau}$ in the algebra $\mathcal{B}(X) / I$ by (the condition): the sequence $\left\{x_{n}\right\}_{n \in \omega}$ of elements of $\mathcal{B}(X) / I$ converges to an element x of $\mathcal{B}(X) / I$ if and only if $\bigwedge_{k \in \omega} \bigvee_{n \geq k}\left(x_{n} \Delta x\right)=I$ (in symbols $x_{n} \Rightarrow x$). We call a set U open if whenever $x \in U$ and $x_{n} \Rightarrow x$, then $x_{n} \in U$ for n sufficiently large. For the details and for the connections with the topology τ on $\mathcal{B}(X)$ introduced in the same way by the convergence $x_{n} \rightarrow x$ if and only if $\cap_{k \in \omega} \cup_{n \geq k}\left(x_{n} \Delta x\right)=\emptyset$ see [G].

Remark 2 Since $M A+\neg C H$ implies $\mathcal{B}(X)=\mathcal{P}(X)$ for all $X \subseteq \mathbf{R}$ of uncountable cardinality $<2^{\omega}, C o n\left(Z F C+M A+\neg C H_{+}\right.$there exists a good σ-ideal I on $\mathcal{B}(X)$
for a set X of uncountable cardinality $\left.<2^{\omega}\right)$ is equivalent to Con $\left(Z F C_{+}\right.$there exists a measurable cardinal).

Lemma 2 For any good σ-ideal I on $\mathcal{B}(X)$ we have:
(i) The space $\mathcal{B}(X) / I$ with the topology $\bar{\tau}$ is a sequential space.
(ii) If $M A+\neg C H$ is true and a set X is of cardinality $<2^{\omega}$, then $\mathcal{B}(X) / I$ is a Frechet space.

Proof. See [G] lemmas 1 and 3.
Remark 3 The lemma 2(ii) implies that $\mathcal{B}(X) / I$ is a complete, weakly countably distributive, ccc Boolean algebra. See [G].

Lemma 3 For any good σ-ideal I on $\mathcal{B}(X)$ the following are equivalent:
(i) There exists a strictly positive Maharam submeasure on the complete algebra $\mathcal{B}(X) / I$.
(ii) The topology $\bar{\tau}$ on the algebra $\mathcal{B}(X) / I$ is metrizable.
(iii) The space $\mathcal{B}(X) / I$ with the topology $\bar{\tau}$ and with the operation \triangle is a topological group.

Proof. For $(i) \equiv(i i)$ see $[M]$. For $(i i) \equiv(i i i)$ see [S-I] and [V] Thm. 14 p. 135.

By the above results, we have the following topological characterization of sets from \mathcal{M} :

Lemma $4 A$ set $X \in \mathcal{M}$ if and only if for every good σ-ideal I the topology $\bar{\tau}$ in $\mathcal{B}(X) / I$ is nonmetrizable if and only if the algebra $\mathcal{B}(X) / I$ is not a topological group in the topology $\bar{\tau}$ and with the operation \triangle.

Lemma 5 For any good σ-ideal I the algebra $\mathcal{B}(X) / I$ is a regular space (with the topology $\bar{\tau}$) if and only if it is a Hausdorff space.

Proof. See de Marr in [B] p. 245 and [V] Thm. 14 p. 135.

Remark 4 For algebras with the order sequential topology (i.e. os-topology; see [V] for definition), which is not ccc the above is not true; see [G] Prop. 2 (iii).

Lemma 6 If $x_{n} \Rightarrow x$ and $y_{n} \Rightarrow y$, then $x_{n} \Delta y_{n} \Rightarrow x \Delta y$.
Now we can prove:
Proposition 1 If $M A+\neg C H$ is true, then the topology $\bar{\tau}$ in $\mathcal{B}(X) / I$ is not Hausdorff for any good σ-ideal $I \subseteq \mathcal{B}(X)$, where $X \subseteq \mathbf{R}$ is of cardinality $<2^{\omega}$.

Proof. Assume that $\mathcal{B} /(X) I$ is a Hausdorff space. By lemma 5 it is a regular space, and by Proposition 2(iv) and Lemma 3 from [G], it is a locally sequentially compact (see $[E]$ for the definition), sequential space. This implies the product $\mathcal{B}(X) / I \times \mathcal{B}(X) / I$, with the product topology, is a sequential space (see Boehme in [E] p. 271). It is not difficult to show that the operation Δ from $\mathcal{B}(X) / I \times \mathcal{B}(X) / I$ is a continuous function - use the Lemma 2 from [G], lemma 6. Hence $\mathcal{B}(X) / I$ is topological group, but this is not possible because $X \in \mathcal{M}$ (see lemma 4).

We say $X \subseteq \mathbf{R}$ has the property \mathcal{F} if for every good σ-ideal I the algebra $\mathcal{B}(X) / I$ is not a Hausdorff space with the topology $\bar{\tau}$. It is obvious that $\mathcal{F} \subseteq \mathcal{M}$.

By proposition 1 we have:
Corollary 2 If $M A+\neg C H$ is true, then every set $X \subseteq \mathbf{R}$ of cardinality $<2^{\omega}$ has the property \mathcal{F}.

The method used in the proof of Proposition 1 gives:
Proposition 2 Let I be a good σ-ideal on $\mathcal{B}(X)$. There exists a strictly positive Maharam submeasure on $\mathcal{B}(X) / I$ if and only if the product $\mathcal{B}(X) / I \times \mathcal{B}(X) / I$, with the product topology of topology $\bar{\tau}$ is a sequential space.

Corollary 3 (i) If $\mathcal{B}(X) / I$ is a Hausdorff, sequentially compact space, then there exists a strictly positive Maharam submeasure on $\mathcal{B}(X) / I$.
(ii) There exists a strictly positive Maharam submeasure on $\mathcal{B}(X) / I$ if and only if $\mathcal{B}(X) / I$ has a countable basis of the neighborhoods of zero.

Compare with Theorem 3 in [M]. Corollary 3(ii) is true for every complete, atomless, ccc, Boolean algebra.

The existence of a Hausdorff, sequentially compact $\mathcal{B}(X) / I$ space gives a negative answer to the control measure problem.

Problem: Let I be a good ideal in $\mathcal{B}(X)$. If $\mathcal{B}(X) / I$ is a Hausdorff space with the topology $\bar{\tau}$, then is there a strictly positive Maharam submeasure on $\mathcal{B}(X) / I$?

Corollary 4 If $I \subseteq I^{*}$ are good ideals on $\mathcal{B}(X)$ and there exists a strictly positive Maharam submeasure on $\mathcal{B}(X) / I$, then there exists a strictly positive Maharam submeasure on $\mathcal{B}(X) / I^{*}$.

Proof. The natural mapping from $\mathcal{B}(X) / I$ onto $\mathcal{B}(X) / I^{*}$ is open.

References

[B] G. Birkhoff, Lattice theory, AMS Colloquium Publications, 1967.
[D] R.M. Dudley, On sequential convergence, Trans. AMS, 112 (1964), 483-507.
[E] R. Engelking, General Topology, Polish Scientific Publishers, 1977.
[F] D. Fremlin, Measure algebras, in Handbook of Boolean Algebras, North Holland, 1989.
[G] W. Główczyński, Measures on Boolean Algebras, Proc. Amer. Math. Soc. 111 (1991), 845-849
[J] T. Jech, Set Theory, Academic Press, 1978.
[K] J. Kisyński, Convergence du type L, Coll. Math. 7 (1960), 205-211.
[L] R. Laver, On the consistency of Borel Conjecture, Acta Mathematica, 137 (1976), 151-169.
[M] D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947), 153-167.
[Mi] A. Miller, Special subsets of the real line in Handbook of Set Theoretical Topology, North Holland 1984.
[S-I] T.A. Sarymsakow and A.N. Islamow, The existence of an outer measure on Boolean algebras, and certain questions of convergence in topological
semifields, Dokl. Akad. Nauk UzSSR 4 (1974), N4, 3-5. MR 53\#760. (in Russian).
[S] L.A. Savelev, On order topology and continuous measures, Sibirsky Math. Jour. 6 (1965) 1356-1364 (in Russian).
[V] D.A. Vladimirov [1969], Boolean Algebras, Nauka, Moscow 1969 (in Russian).

Received July 27, 1990

[^0]: ${ }^{1}$ Partially supported by Spoleczny Komitet Nauki.

