Real Analysis Exchange Vol.16 (1990–91)

Wiesław Główczyński¹, Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland.

Special Subsets of the Real Line

We introduce two properties \mathcal{M} and \mathcal{F} of subsets of the real line **R** concerning the control measure problem. We present a topological point of view on the problem. We also make remarks on above properties under the assumption $MA + \neg CH$.

We use the topological definitions in [E], the Boolean measure definitions as in [F], and the set theoretic ones in [J]. We use standard notation, in particular MA, $\neg CH$ abbreviate statements: Martin's Axiom, and negation of the Continuum Hypothesis. The symbols $\land, \lor, \bigtriangleup$ denote infimum, supremum and symmetric difference in Boolean algebras. By $\mathcal{P}(X), \mathcal{B}(X)$ we mean the power set of X and the set of all Borel subsets of $X \subseteq \mathbf{R}$.

Let \mathcal{A} be a σ -algebra of subsets of a set X. A Maharam submeasure ν on \mathcal{A} is a map from \mathcal{A} to [0,1] which satisfies the following properties:

- (1) $\nu(\emptyset) = 0.$
- (2) If $E, F \in \mathcal{A}$ and $E \subseteq F$, then $\nu(E) \leq \nu(F)$.
- (3) If $E, F \in \mathcal{A}$, then $\nu(E \cup F) \leq \nu(E) + \nu(F)$.
- (4) If $\{E_n\}_{n\in\omega}^{\infty}$ is a sequence of sets from \mathcal{A} and $\bigcap_{k\in\omega} \bigcup_{n\geq k} (E_n \Delta E) = \emptyset$, then $\lim_{n\to\infty} \nu(E_n) = \nu(E)$.
- (5) $\nu(\{x\}) = 0$ for all $x \in X$.

An important problem of measure theory is the following control measure problem: for given a σ -algebra \mathcal{A} and a Maharam submeasure ν on \mathcal{A} , does there exist a probability measure μ on \mathcal{A} , such that for all $A \in \mathcal{A}$, $\nu(A) = 0$ if and only if $\mu(A) = 0$?

By C and N we mean the σ -ideal of strong measure zero subsets of the real line **R** and the σ -ideal of universally measure zero subsets of **R**, respectively; see [Mi] for definitions.

We introduce the following σ -ideal \mathcal{M} : A set $X \subseteq \mathbf{R}$ belongs to \mathcal{M} if and only if for every Maharam submeasure ν on the σ -field $\mathcal{B}(X)$ of Borel subsets of X (or equivalently on $\mathcal{B}(\mathbf{R})$) $\nu(X) = 0$.

¹Partially supported by Społeczny Komitet Nauki.

For every Maharam submeasure ν on $\mathcal{B}(\mathbf{R})$ the sets of ν submeasure zero form a σ -ideal I_{ν} (because (3) and (4) imply $\nu(\bigcup_{n\in\omega}E_n) \leq \sum_{n\in\omega}\nu(E_n)$). Hence $\mathcal{M} = \bigcap\{I_{\nu} : \nu \text{ is a Maharam submeasure on } \mathcal{B}(\mathbf{R})\}$ is a σ -ideal.

Lemma 1

$$\mathcal{C} \subseteq \mathcal{M} \subseteq \mathcal{N}$$

PROOF. The second inclusion is obvious. We prove the first inclusion. For each $x \in X$ and any Maharam submeasure ν we have $\nu(\{x\}) = 0$ and $\{x\} = \bigcap_{n \in \omega} U_n$, where $\{U_n\}_{n \in \omega}$ is monotonically decreasing sequence of intervals. Hence for every $\epsilon > 0$ there exists $\delta > 0$ such that: if U is any subinterval of [0, 1] of diameter less then δ , then $\nu(U) < \epsilon$.

Therefore it is easy to see that any strong measure zero set is a Maharam submeasure ν zero set.

Remark 1 An example of a set from $\mathcal{N} \setminus \mathcal{M}$ answers the control measure problem.

Corollary 1 If $MA + \neg CH$ is true then:

- (i) For every set $X \subseteq \mathbf{R}$ of cardinality $< 2^{\omega} X \in \mathcal{M}$.
- (ii) There exists a set $X \subseteq \mathbf{R}$ of cardinality 2^{ω} such that $X \in \mathcal{M}$.

PROOF. For (i) see [L] and lemma 1. For (ii): the example of such X is the generalized Lusin set; see [L]. \Box

By a good σ -ideal I we always mean a σ -ideal on $\mathcal{B}(X)$, where $X \subseteq \mathbf{R}$, such that I contains all points of X and the quotient algebra $\mathcal{B}(X)/I$ is atomless and satisfies the countable chain condition.

We introduce a topology $\bar{\tau}$ in the algebra $\mathcal{B}(X)/I$ by (the condition): the sequence $\{x_n\}_{n\in\omega}$ of elements of $\mathcal{B}(X)/I$ converges to an element x of $\mathcal{B}(X)/I$ if and only if $\bigwedge_{k\in\omega}\bigvee_{n\geq k}(x_n\Delta x)=I$ (in symbols $x_n\Rightarrow x$). We call a set U open if whenever $x\in U$ and $x_n\Rightarrow x$, then $x_n\in U$ for n sufficiently large. For the details and for the connections with the topology τ on $\mathcal{B}(X)$ introduced in the same way by the convergence $x_n \to x$ if and only if $\bigcap_{k\in\omega} \bigcup_{n>k} (x_n\Delta x) = \emptyset$ see [G].

Remark 2 Since $MA + \neg CH$ implies $\mathcal{B}(X) = \mathcal{P}(X)$ for all $X \subseteq \mathbf{R}$ of uncountable cardinality $< 2^{\omega}$, $Con(ZFC + MA + \neg CH_{+}$ there exists a good σ -ideal I on $\mathcal{B}(X)$

for a set X of uncountable cardinality $\langle 2^{\omega} \rangle$ is equivalent to $Con(ZFC_{+}$ there exists a measurable cardinal).

Lemma 2 For any good σ -ideal I on $\mathcal{B}(X)$ we have:

- (i) The space $\mathcal{B}(X)/I$ with the topology $\bar{\tau}$ is a sequential space.
- (ii) If $MA + \neg CH$ is true and a set X is of cardinality $< 2^{\omega}$, then $\mathcal{B}(X)/I$ is a Frechet space.

PROOF. See [G] lemmas 1 and 3.

Remark 3 The lemma 2(ii) implies that $\mathcal{B}(X)/I$ is a complete, weakly countably distributive, ccc Boolean algebra. See [G].

Lemma 3 For any good σ -ideal I on $\mathcal{B}(X)$ the following are equivalent:

- (i) There exists a strictly positive Maharam submeasure on the complete algebra $\mathcal{B}(X)/I$.
- (ii) The topology $\bar{\tau}$ on the algebra $\mathcal{B}(X)/I$ is metrizable.
- (iii) The space $\mathcal{B}(X)/I$ with the topology $\bar{\tau}$ and with the operation Δ is a topological group.

PROOF. For $(i) \equiv (ii)$ see [M]. For $(ii) \equiv (iii)$ see [S-I] and [V] Thm. 14 p. 135.

By the above results, we have the following topological characterization of sets from \mathcal{M} :

Lemma 4 A set $X \in \mathcal{M}$ if and only if for every good σ -ideal I the topology $\overline{\tau}$ in $\mathcal{B}(X)/I$ is nonmetrizable if and only if the algebra $\mathcal{B}(X)/I$ is not a topological group in the topology $\overline{\tau}$ and with the operation Δ .

Lemma 5 For any good σ -ideal I the algebra $\mathcal{B}(X)/I$ is a regular space (with the topology $\overline{\tau}$) if and only if it is a Hausdorff space.

PROOF. See de Marr in [B] p. 245 and [V] Thm. 14 p. 135. \Box

Remark 4 For algebras with the order sequential topology (i.e. os-topology; see [V] for definition), which is not ccc the above is not true; see [G] Prop. 2 (iii).

Lemma 6 If $x_n \Rightarrow x$ and $y_n \Rightarrow y$, then $x_n \triangle y_n \Rightarrow x \triangle y$.

Now we can prove:

Proposition 1 If $MA + \neg CH$ is true, then the topology $\overline{\tau}$ in $\mathcal{B}(X)/I$ is not Hausdorff for any good σ -ideal $I \subseteq \mathcal{B}(X)$, where $X \subseteq \mathbf{R}$ is of cardinality $< 2^{\omega}$.

PROOF. Assume that $\mathcal{B}/(X)I$ is a Hausdorff space. By lemma 5 it is a regular space, and by Proposition 2(iv) and Lemma 3 from [G], it is a locally sequentially compact (see [E] for the definition), sequential space. This implies the product $\mathcal{B}(X)/I \times \mathcal{B}(X)/I$, with the product topology, is a sequential space (see Boehme in [E] p. 271). It is not difficult to show that the operation Δ from $\mathcal{B}(X)/I \times \mathcal{B}(X)/I$ is a continuous function — use the Lemma 2 from [G], lemma 6. Hence $\mathcal{B}(X)/I$ is topological group, but this is not possible because $X \in \mathcal{M}$ (see lemma 4).

We say $X \subseteq \mathbf{R}$ has the property \mathcal{F} if for every good σ -ideal I the algebra $\mathcal{B}(X)/I$ is not a Hausdorff space with the topology $\overline{\tau}$. It is obvious that $\mathcal{F} \subseteq \mathcal{M}$.

By proposition 1 we have:

Corollary 2 If $MA + \neg CH$ is true, then every set $X \subseteq \mathbf{R}$ of cardinality $< 2^{\omega}$ has the property \mathcal{F} .

The method used in the proof of Proposition 1 gives:

Proposition 2 Let I be a good σ -ideal on $\mathcal{B}(X)$. There exists a strictly positive Maharam submeasure on $\mathcal{B}(X)/I$ if and only if the product $\mathcal{B}(X)/I \times \mathcal{B}(X)/I$, with the product topology of topology $\overline{\tau}$ is a sequential space.

Corollary 3 (i) If $\mathcal{B}(X)/I$ is a Hausdorff, sequentially compact space, then there exists a strictly positive Maharam submeasure on $\mathcal{B}(X)/I$.

(ii) There exists a strictly positive Maharam submeasure on $\mathcal{B}(X)/I$ if and only if $\mathcal{B}(X)/I$ has a countable basis of the neighborhoods of zero.

Compare with Theorem 3 in [M]. Corollary 3(ii) is true for every complete, atomless, ccc, Boolean algebra.

The existence of a Hausdorff, sequentially compact $\mathcal{B}(X)/I$ space gives a negative answer to the control measure problem.

PROBLEM: Let I be a good ideal in $\mathcal{B}(X)$. If $\mathcal{B}(X)/I$ is a Hausdorff space with the topology $\bar{\tau}$, then is there a strictly positive Maharam submeasure on $\mathcal{B}(X)/I$?

Corollary 4 If $I \subseteq I^*$ are good ideals on $\mathcal{B}(X)$ and there exists a strictly positive Maharam submeasure on $\mathcal{B}(X)/I$, then there exists a strictly positive Maharam submeasure on $\mathcal{B}(X)/I^*$.

PROOF. The natural mapping from $\mathcal{B}(X)/I$ onto $\mathcal{B}(X)/I^*$ is open.

References

- [B] G. Birkhoff, Lattice theory, AMS Colloquium Publications, 1967.
- [D] R.M. Dudley, On sequential convergence, Trans. AMS, 112 (1964), 483–507.
- [E] R. Engelking, General Topology, Polish Scientific Publishers, 1977.
- [F] D. Fremlin, Measure algebras, in Handbook of Boolean Algebras, North Holland, 1989.
- [G] W. Główczyński, Measures on Boolean Algebras, Proc. Amer. Math. Soc. 111 (1991), 845–849
- [J] T. Jech, Set Theory, Academic Press, 1978.
- [K] J. Kisyński, Convergence du type L, Coll. Math. 7 (1960), 205–211.
- R. Laver, On the consistency of Borel Conjecture, Acta Mathematica, 137 (1976), 151-169.
- [M] D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947), 153-167.
- [Mi] A. Miller, Special subsets of the real line in Handbook of Set Theoretical Topology, North Holland 1984.
- [S-I] T.A. Sarymsakow and A.N. Islamow, The existence of an outer measure on Boolean algebras, and certain questions of convergence in topological

semifields, Dokl. Akad. Nauk UzSSR 4 (1974), N4, 3-5. MR 53#760. (in Russian).

- [S] L.A. Savelev, On order topology and continuous measures, Sibirsky Math. Jour. 6 (1965) 1356-1364 (in Russian).
- [V] D.A. Vladimirov [1969], Boolean Algebras, Nauka, Moscow 1969 (in Russian).

Received July 27, 1990