Real Analysis Exchange Vol.16 (1990–91)

S. Leader, Mathematics Department, Rutgers University, New Brunswick, NJ 08903.

Variation of f on E and Lebesgue Outer Measure of fE

Let f be a real-valued function on a cell K = [a, b]. By "cell" we mean a closed, bounded, nondegenerate interval in \mathbf{R} . The total variation of f is given by a Kurzweil-Henstock integral $\int_{K} |df| \leq \infty$ defined as the gauge-filtered limit of approximating sums over cell divisions with endpoint tags. For a development of this type of integral and its associated definition of differential, see [3,4,5]. We hope the reader will be impressed with the utility of our differential formulations based on an "honest" definition of differential. We define the <u>variation</u> of f on a subset E of K to be the upper integral $\overline{f}_K |I_E| df \leq \infty$ where I_E is the indicator of E. We call E df-null if this integral is zero, that is, if the differential $1_E df = 0$ [3,4]. Before the advent of the Kurzweil-Henstock integral df-null sets E were treated indirectly by using the condition that the image fE be Lebesgue-null. Indeed, as we shall show in Theorem 2, fE is Lebesgue-null if E is df-null. This result enables us to avoid the usual tedious proofs that an image fE is Lebesgue-null by resorting to a concise proof of the inherently stronger condition that E is df-null. Theorem 11 gives a converse to Theorem 2 for f a continuous function of bounded variation. For such f a set E is df-null if and only if fE is Lebesgue-null. So for continuous f of bounded variation Lusin's condition (N) that f map Lebesguenull sets into Lebesgue-null sets is obviously just the absolute continuity conditon that every Lebesgue-null set is df-null. Let m be Lebesgue measure and m^* be Lebesgue outer measure.

Theorem 1. Let E be a subset of K such that at each point of E f is either left or right continuous. Then

(1)
$$m^*(fE) \le 2\overline{\int}_K 1_E |df|$$

Proof: Let D be the set of those t in E for which there exist cells J containing t with diam fJ = 0, that is, with f constant on J. Clearly fD is countable, so m(fD) = 0. Given a gauge δ on K and $\varepsilon > 0$ each t in $E \setminus D$ is an endpoint of some cell J in K such that (J,t) is δ -fine and $0 < \text{diam } FJ < \varepsilon$. Given c > 1 choose s in J such that

(2)
$$0 < \sup_{r \in J} |f(r) - f(t)| \le c |f(s) - f(t)|.$$

Let I be the cell with endpoints s, t. Then by (2) we have

(3)
$$\operatorname{diam} fI \leq \operatorname{diam} fJ \leq 2c |\Delta f(I)|$$

Thus

(4)
$$(I,t)$$
 is a δ -fine tagged cell with t in E/D and
 $0 < \operatorname{diam} fI \le 2c |\Delta f(I)|.$

Moreover,

(5)
$$\operatorname{diam} fI < \varepsilon$$
.

Let \mathcal{H} be the set of all cells H of the form $[\inf fI, \sup fI]$ for some (I, t) satisfying (4). By (5) \mathcal{H} is a Vitali covering of $f(E \setminus D)$, hence of m-all of fE. So m-all of fE is covered by a countable set $\{H_i\}$ of disjoint members H_i of \mathcal{H} . For each H_i choose (I_i, t_i) satisfying (4) with H_i the convex closure of fI_i . The I_i 's are disjoint since $fI_i \subseteq H_i$. Thus by (4)

(6)
$$m^*(fE) \leq \Sigma_i m(H_i) = \Sigma_i \operatorname{diam} fI_i \leq 2c \Sigma_i |\Delta f(I_i)| \\ \leq 2c \overline{\Sigma}(1_E |\Delta f|, \delta)$$

where the upper sum is the supremum of all approximating sums over δ -divisions of K, [3,4]. Since δ is an arbitrary gauge (6) gives

(7)
$$m^*(fE) \le 2c \overline{\int}_K 1_E |df| \text{ for all } c > 1.$$

Clearly (7) implies (1).

Theorem 2. If A is df-null then m(fA) = 0.

Proof: Since $1_A df = 0$, $1_p df = 0$ for every point p in A. That is, f is continuous at every p in A. So Theorem 1 gives m(fA) = 0.

Under certain conditions on f the inequality (1) in Theorem 1 can be sharpened by halving the coefficient 2 on the right side in (1). Such is our next result. **Theorem 3.** Let E be a subset of K and A a df-null subset of E such that for each t in $E \setminus A$ either f is left continuous and $(df/|df|)_{-}(t)$ exists, or f is right continuous and $(df/|df|)_{+}(t)$ exists. Then

(8)
$$m^*(fE) \le \overline{\int}_K 1_E |df|.$$

Proof: By Theorem 2 we may assume A is empty. Existence (in the narrow sense [5]) of $(df/|df|)_{-}(t) = \lim_{I \to t^{-}} \Delta f(I)/|\Delta f(I)|$ means that for all sufficiently small I with right endpoint t sgn $\Delta f(I) = (df/|df|)_{-}(t) \neq 0$. If this left derivative equals 1 then f(t) = Max fI. If it equals -1 then f(t) = Min fI. Analogous statements hold for the right derivative. In either case the radius of fI about f(t) equals diam fI. So the coefficient 2 in (3) can be replaced by 1 inducing the replacement of 2c by c in (4), (6), (7). The modified proof of Theorem 1 then gives (8) in place of (1).

A classical special case of Theorem 3 is the following.

Theorem 4. If f'(t) exists and is finite for df-all t in E then (8) holds.

Proof: If f'(t) exists and is not 0 then so does $df/|df|(t) = \operatorname{sgn} f'(t) = \pm 1$. Let B be the set of all t where f'(t) exists and is finite. Then $1_B df = 1_B f' dt$. So the set of points where f' = 0 is df-null. By hypothesis the subset of E where f' fails to exist is df-null. Hence, the set A of all t in E where either f'(t) = 0 or f'(t) fails to exist is df-null. At each t in $E \setminus A$ f has a nonzero derivative. So f is continuous at t and df/|df|(t) exists. Hence, Theorem 3 gives (8).

Our next result gives (8) in particular for continuous functions of bounded variation. df is <u>dampable</u> if there exists an everywhere positive function u on K such that both u df and u|df| are integrable [3,4].

Theorem 5. Let f be continuous with df dampable on K. Then (8) holds for every subset E of K.

Proof: By Prop. 21 of [5] there is a df-null subset A of K such that df/|df|(t) exists in the narrow sense at every t in $K \setminus A$. So Theorem 3 applies and gives (8).

Our next result generalizes an exercise in [6] whose utility was pointedly noted by Varberg [7]. **Theorem 6.** Let $|f'(t)| \leq c$ at df-all t in E. Then $m^*(fE) \leq c m^*(E)$.

Proof: By hypothesis there is a df-null subset A of E such that $|f'(t)| \leq c$ for all t in $E \setminus A$. Thus $1_E |df| = 1_{E \setminus A} |df| = 1_{E \setminus A} |f'| dt \leq c \ 1_E dt$. By Theorem 4 (8) holds. So $m^*(fE) \leq \overline{f}_K \ 1_E |df| \leq c \ \overline{f}_K \ 1_E dt \leq c \ m^*(E)$.

In the results that follow we shall apply Theorem 2 to get Lebesgue nullity of image sets in Theorems 7, 8, 9, 11 and 12.

Theorem 7. Let f be continuous with df dampable on K. Then the set A of all points where f has either a left or right derivative equal to zero is df-null. So m(fA) = 0.

Proof: Let B be the set of points where f has a right derivative equal to 0. We need only show B is df-null since a similar proof applies for the left derivative. Let P(I,t) = 1 if t is the left endpoint of I, 0 if t is the right endpoint. Then $P \mathrel{1_B} \Delta f = o(\Delta t)$ so $P \mathrel{1_B} df = 0$. By Theorem 16 of [4] $P \mathrel{1_B}$ is tag-null dfeverywhere. That is, for df-all t in B the indicator P(I,t) = 0 ultimately as $I \to t$. But this can only occur at b since for t < b we have P(I,t) = 1 as $I \to t$. But this can only occur at b since for t < b we have P(I,t) = 1 as $I \to t$. Clearly b cannot belong to B. So the empty set is df-all of B. That is, B is df-null. m(fB) = 0 by Theorem 2.

Theorem 8. Let A be a Lebesgue-null subset of K such that all four Dini derivates of f are finite at each point in A. Then A is df-null, so m(fA) = 0.

Proof: By hypothesis there exist a gauge δ and a function g on K such that $|\Delta f|/\Delta t \ (I) \leq g(t)$ for all δ -fine (I,t) with t in A. That is, $1_A |\Delta f| \leq 1_A g \ \Delta t$ at each δ -fine tagged cell. So $1_A |df| \leq 1_A g \ dt = 0$ since $1_A \ dt = 0$ for Lebesgue-null A. Hence, $1_A \ df = 0$. m(fA) = 0 by Theorem 2. \Box

Theorem 2 easily gives Theorem 1 of [2] which we formulate in terms of differentials as our next result.

Theorem 9. If df = g dt on K and A is a Lebesgue-null subset of K then fA is Lebesgue-null.

Proof: Since $1_A dt = 0$, $1_A df = g 1_A dt = 0$. So m(fA) = 0 by Theorem 2.

Our next result is an extension of Banach's indicatrix theorem [1].

Theorem 10. Let f be a continuous function of bounded variation on K. Let N(t) be the number of points s in K such that f(s) = t. Then for every Borel set E in **R**

(9)
$$\int_{K} 1_{f^{-1}E} |df| = \int_{\mathbf{R}} 1_{E} N dt.$$

Proof: (Since N = 0 outside fK the integral on the right in (9) is effectively over fK rather than over \mathbf{R} .) For f of bounded variation $\int_K 1_B |df|$ defines a measure on the Borel sets B in K [4]. Since f is Borel measurable $f^{-1}E$ is a Borel set for E a Borel set. So $\alpha(E)$ defined by the left side of (9) gives a Borel measure α on \mathbf{R} , indeed on fK. By Banach's indicatrix theorem [1,6] $N < \infty$ dt-everywhere and (9) holds for $E = \mathbf{R}$. That is,

(10)
$$\int_{K} |df| = \int_{K} N dt.$$

Since N dt is integrable and nonnegative it defines a Borel measure β on **R** with $\beta(E)$ given by the right side of (9) for each Borel set E in **R**. We need only show $\alpha = \beta$. Given D open in K apply (10) to $K_i = \overline{I}_i$ for each component I_i of D. Since f is continuous, the integral of |df| over K_i equals the integral of $1_{I_i}|df|$ over K. So summation of (10) over K_i gives

(11)
$$\int_{K} 1_{D} |df| = \int_{\mathbf{R}} N_{D} dt$$

where $N_D(t)$ is the number of points s in D such that f(s) = t. Given an open subset B of **R** apply (11) to the open subset $D = f^{-1}B$ of K, noting that $N_D = 1_B N$, to conclude that $\alpha(B) = \beta(B)$. So $\alpha = \beta$ since Borel measures on **R** are regular. \Box

Theorem 10 gives a converse to Theorem 2 for continuous functions of bounded variation. This is our next result. The conclusion that m(gA) = 0 is Theorem 18 in [7].

Theorem 11. Let f be a continuous function of bounded variation on K. Let A be a subset of K such that m(fA) = 0. Then A is df-null and m(gA) = 0 for dg = |df|.

Proof: The Lebesgue-null fA is contained in a Lebesgue-null Borel set E, $1_E dt = 0$. So $f^{-1}E$ is df-null by (9). Thus, since $A \subseteq f^{-1}E$, A is df-null. For dg = |df|, A is dg-null. Hence, m(gA) = 0 by Theorem 2.

Our next result characterizes monotoneity in terms of the upper right derivate. A similar result holds for the upper left derivate. The open interval U can be bounded or unbounded.

Theorem 12. Let f be continuous on an open interval U. Let A be the set of all t in U where the upper right derivate $D^+f(t) \leq 0$. Then the following conditions are equivalent:

- (i) $f(s) \leq f(t)$ for all $s \leq t$ in U,
- (ii) A is df-null on every cell K in U,
- (iii) fA is Lebesgue-null,
- (iv) fA has no interior points.

Proof: Given (i) all derivates of f are nonnegative. Hence, f has a right derivate equal to 0 at every point in A. So (ii) follows from Theorem 7. (ii) implies (iii) by Theorem 2 and the countable additivity of m. (iii) trivially implies (iv). Given (iv) suppose (i) false. Then f(a) > f(b) for some a < b in U. We contend this implies $(f(b), f(a)) \subseteq fA$ contradicting the hypothesis (iv). Let K = [a, b]. Consider any t in the open interval (f(b), f(a)). We contend t is in fA. Since f is continuous $K \cap f^{-1}t$ is nonempty by the intermediate value theorem. It is moreover compact. Let q be its last point. Then since f(b) < t the intermediate value theorem implies f(s) < t for all s in (q, b], hence f(s) - f(q)/s - q < 0. So q is in A. Hence t = f(q) is in fA.

We finish with a pair of exercises characterizing monotone and monotone, continuous functions.

Theorem 13. Let f be a function on K such that

(12)
$$\dim fK = \int_K |df| < \infty$$

Then f is monotone.

Proof: We may assume $f(a) \leq f(b)$. (Otherwise consider -f.) Given $s \leq t$ in K we contend $f(s) \leq f(t)$. Take $s_n \leq t_n$ in K such that

(13)
$$|f(s_n) - f(t_n)| \to \text{ diam } fK \text{ as } n \to \infty.$$

Since $a \le s_n \le t_n \le b$, $|f(a) - f(s_n)| + |f(s_n) - f(t_n)| + |f(t_n) - f(b)| \le \int_K |df|$. So for all n = 1, 2, ...

(14)
$$|f(a) - f(s_n)| + |f(t_n) - f(b)| \le \int_K |df| - |f(s_n) - f(t_n)|.$$

By (14), (13), (12) $f(s_n) \to f(a)$ and $f(t_n) \to f(b)$ as $n \to \infty$. So $f(b) - f(a) = \int_K |df|$ by (13), (12). Thus $f(s) - f(a) + |f(t) - f(s)| + f(b) - f(t) \le f(b) - f(a)$ since $a \le s \le t \le b$. Hence $|f(t) - f(s)| \le f(t) - f(s)$. That is, $f(s) \le f(t)$.

Our final result follows easily from Theorem 13.

Theorem 14. Let f be a function on K such that

(15)
$$m^*(fK) = \int_K |df| < \infty.$$

Then f is monotone and continuous.

Proof: Let $J = [\inf fK, \sup fK]$. Then $m^*(fK) \leq m(J) = \dim fK \leq \int_K |df|$. By (15) equality holds throughout these inequalities. In particular (12) holds. So f is monotone by Theorem 13. Since m(fK) = m(J), fK is dense in J. So the monotone f cannot have a saltus in K. Hence, f is continuous. \Box

References

- S. Banach, Sur les lignes rectifiables et les surfaces dont l'aire est finie, Fund. Math. 7 (1925) 225-236.
- [2] X. Dongfu, L. Shipan, Henstock integrals and Lusin's condition (N), Real Anal. Exchange 13 no. 2 (1987-88) 451-543.
- [3] S. Leader, What is a differential? A new answer from the generalized Riemann integral, Amer. Math. Monthly 93 (1986) 348-356.
- [4] _____, A concept of differential based on variational equivalence under generalized Riemann integration, Real Anal. Exchange 12 (1986-1987) 144-175.
- [5] _____, 1-differentials on 1-cells: a further study, Lecture Notes in Mathematics - 1419: New Integrals, Eds: P.S. Bullen et al., Springer-Verlag (1990) 82-96.
- [6] I.P. Natanson, Theory of Functions of a Real Variable, New York (1961).

[7] D.E. Varberg, On absolutely continuous functions, Amer. Math. Monthly 72 (1965) 831-840.

Received July 9, 1990