The Relations of Hausdorff, *-Hausdorff, and Packing Measures

1. Introduction

We use several distinct outer measures to investigate the size of thin sets in \mathbf{R}^{d}. In this paper, we are interested in only three outer measures, $\phi-m$ (Hausdorff measure), $\phi-m^{*}(*-H a u s d o r f f$ measure), and $\phi-p$ (packing measure), based on a monotone function ϕ.

In [5], it was shown that $\phi-m(E) \leq \phi-m^{*}(E) \leq \phi-p(E)$ for any set $E \subset \mathbf{R}^{d}$.

We will investigate some other relations of the aforementioned outer measures.

We adopt a new definition of *-regularity, and p-regularity by using *Hausdorff and packing measures, as regularity is defined by using Hausdorff measure. We will show that the decomposition theorem holds for packing measure as it does for Hausdorff measure [1]. Further, every subset of a p-regular set has identical *-Hausdorff and packing measures, whereas every subset having positive packing measure of a p-irregular set cannot have identical *-Hausdorff and packing measures. Futhermore, the set of p-regular
 set ϕ-p.a.s., and their difference is of $\phi-m$ measure zero. A similar result is

Supported in part by TGRC-KOSEF and the Basic Science Research Institute program, Ministry of Education, Korea, 1990.
obtained for the set of p-regular points and the set of regular points of the given set. If E is $\phi-p$-measurable and $\phi-p(E)<\infty$ for $\phi(t)=t$, then we can characterize the maximal Y-set of $E \phi$-p.a.s. by the set of p-regular points of E.

2. Preliminaries

Let $\phi:[0,1] \rightarrow \mathbf{R}$ be a function which is increasing, continuous with $\phi(0)=0, \phi(h)>0$ for $h>0$, and satisfies a smoothness condition. The smoothness condition is that there exists $c_{\phi}>0$ such that $\phi(2 s) \leq c_{\phi} \phi(s)$ for $0 \leq s \leq \frac{1}{2}$.

The Hausdorff measure of a set $E \subset \mathbf{R}^{d}$ is defined as

$$
\phi-m(E)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{n=1}^{\infty} \phi\left(\operatorname{diam} G_{n}\right): E \subset \cup_{n=1}^{\infty} G_{n}, \operatorname{diam} G_{n} \leq \delta\right\}
$$

The $*$-Hausdorff measure of a set $E \subset \mathbf{R}^{d}$ (see [5]) is defined as ϕ $m^{*}(E)=\sup \left\{\phi-M^{*}(F): F \subset E\right\}$, where

$$
\begin{aligned}
\phi-M^{*}(F)= & \lim _{\delta \rightarrow 0} \inf \left\{\sum_{n=1}^{\infty} \phi\left(\operatorname{diam} B_{n}\right): F \subset \cup_{n=1}^{\infty} B_{n}, \operatorname{diam} B_{n} \leq \delta,\right. \\
& \left.B_{n} \text { are open balls centered in } F\right\}
\end{aligned}
$$

We note that $\phi-m(E) \leq \phi-m^{*}(E) \leq c \phi-m(E)$ for a suitable constant $c>0$ [5].

We also note that an equivalent definition of *-Hausdorff measure is obtained if $\phi-m^{*}$ is defined for centered closed balls instead of centered open balls.

We recall the packing measure $\phi-p$ (see [9]) which is obtained by a two-stage definition using the pre-measure $\phi-\mathbf{P}$ defined for bounded sets
$E \subset \mathbf{R}^{d}$ as follows :

$$
\phi-\mathbf{P}(E)=\lim _{\delta \rightarrow 0} \sup \left\{\sum_{n=1}^{\infty} \phi\left(\operatorname{diam} B_{n}\right): B_{n}\right. \text { are disjoint open }
$$

$$
\text { balls centered in } \left.E \text { with diam } B_{n} \leq \delta\right\}
$$

It is immediate from the definition that $\phi-\mathbf{P}(E)=\phi-\mathbf{P}(\bar{E})$.
We employ Method I by Munroe [3] to obtain the outer measure :

$$
\phi-p(E)=\inf \left\{\sum_{n=1}^{\infty} \phi-\mathbf{P}\left(E_{n}\right): E_{n} \text { are bounded }, E \subset \cup_{n=1}^{\infty} E_{n}\right\}
$$

We note that $\phi-m, \phi-m^{*}$, and $\phi-p$ are metric outer measures ([1], [5], [8]) ; hence the corresponding classes of measurable sets include the Borel sets. Further, $\phi-m$ and $\phi-p$ are Borel regular and inner regular ([1], [8]). Also we see that if E is $\phi-p$ measurable, then E is $\phi-m$ measurable and $\phi-m^{*}$ measurable. Using the fact that $\phi-p$ is Borel regular, Borel sets are $\phi-m$ measurable and $\phi-m^{*}$ measurable, and $\phi-m \leq \phi-m^{*} \leq \phi-p$, we easily obtain the above result.

3. Density behaviour for a general measure μ

Throughout this section we assume that μ is a finite measure defined on the Borel subsets of \mathbf{R}^{d}. This implies that μ is inner regular.

If $B_{r}(x)$ denotes the closed ball centered at x with radius r, we define ϕ-densities by

$$
\begin{aligned}
& \underline{D}_{\mu}^{\phi}(x)=\liminf _{r \downharpoonright 0} \mu\left(B_{r}(x)\right) / \phi(2 r) \\
& \bar{D}_{\mu}{ }^{\phi}(x)=\lim _{r \downharpoonright 0} \sup \mu\left(B_{r}(x)\right) / \phi(2 r)
\end{aligned}
$$

We obtain equivalent ϕ-densities using $B_{r}(x)^{0}$ instead of $B_{r}(x)$. Now, we state four lemmas due to Raymond and Tricot (see Theorem 1.1 of [5]).

Lemma 3.1. For any Borel set E with $\phi-m^{*}(E)<\infty$,

$$
\mu(E) \geq \phi-m^{*}(E) \inf \left\{\bar{D}_{\mu}^{\phi}(x): x \in E\right\}
$$

Lemma 3.2. For any Borel set E,

$$
\mu(E) \leq \phi-m^{*}(E) \sup \left\{\bar{D}_{\mu}^{\phi}(x): x \in E\right\}
$$

Lemma 3.3. For any Borel set E with $\phi-p(E)<\infty$,

$$
\mu(E) \geq \phi-p(E) \inf \left\{\underline{D}_{\mu}^{\phi}(x): x \in E\right\}
$$

Lemma 3.4. For any Borel set E,

$$
\mu(E) \leq \phi-p(E) \sup \left\{\underline{D}_{\mu}^{\phi}(x): x \in E\right\}
$$

In the sequal, we will often apply the above lemmas to the measures $\mu(F)=\phi-m(E \cap F), \phi-m^{*}(E \cap F)$, and $\phi-p(E \cap F)$, so we introduce some notations for these cases. If $\phi-p(E)<\infty$ and $\mu(F)=\phi-p(E \cap F)$, put

$$
\begin{aligned}
& \bar{D}_{\mu}^{\phi}(x)={\overline{\Delta_{\phi}}}_{\phi}(x, E)=\lim _{r \downharpoonright 0} \sup \phi-p\left(B_{r}(x) \cap E\right) / \phi(2 r) \\
& \underline{D}_{\mu}^{\phi}(x)=\underline{\Delta}_{\phi}(x, E)=\liminf _{r \downharpoonright 0} \phi-p\left(B_{r}(x) \cap E\right) / \phi(2 r)
\end{aligned}
$$

Similarly, if $\phi-m(E)<\infty$ and $\mu(F)=\phi-m(E \cap F)$, put

$$
\bar{D}_{\mu}^{\phi}(x)=\bar{D}_{\phi}(x, E) \text { and } \underline{D}_{\mu}^{\phi}(x)=\underline{D}_{\phi}(x, E)
$$

If $\phi-m^{*}(E)<\infty$ and $\mu(F)=\phi-m^{*}(E \cap F)$, in a similar manner, we can define $\bar{D}^{*}{ }_{\phi}(x, E)$ and $\underline{D}^{*}{ }_{\phi}(x, E)$.

If $\bar{\Delta}_{\phi}(x, E)=\Delta_{\phi}(x, E)$, we write $\Delta_{\phi}(x, E)$ for the common value. Similarly, we write $D_{\phi}(x, E)$ and $D^{*}(x, E)$. In particular, when $0<\phi-p(E)<$ ∞ for $\phi-p$ measurable set E, a point $x \in E$ is called a p-regular point of E if $\triangle_{\phi}(x, E)=\bar{\triangle}_{\phi}(x, E)=1$; otherwise x is a p-irregular point. When $0<\phi-p(E)<\infty$ for $\phi-p$ measurable set E, E is said to be p-regular if $\phi-p$-almost all of its points are p-regular, and p-irregular if almost all of its points are p-irregular. Similarly, we can define regularity and $*-$ regularity for $\phi-m$ and $\phi-m^{*}$.

Next, we introduce two useful propositions which we shall require to prove the decomposition theorem for packing measures.

Proposition 3.5. Suppose that E is $\phi-p$ measurable and $\phi-p(E)<\infty$. Then $\bar{\triangle}_{\phi}(x, E \backslash F)=0 \phi$-m.a.s. on F for $\phi-p$ measurable set $F \subset E$.

Further, $\bar{\triangle}_{\phi}(x, F)=\bar{\triangle}_{\phi}(x, E) \phi-m$.a.s. on F.
Proof. See Corollary 7.4 of [4].

Proposition 3.6. Let $G=\left\{x \in E:{\overline{\triangle_{\phi}}}(x, E)<k\right\}$, where E is $\phi-p$ measurable and $\phi-p(E)<\infty$, and k is a positive constant. For any $\phi-p$ measureble set $F \subset G$, if $\phi-m(F)=0$, then $\phi-p(F)=0$.

Proof. As in the proof of Proposition 3.5, let E and F be Borel sets. Using Lemma 3.2 with $\mu(E)=\phi-p(E \cap F)$, we obtain $\phi-p(F) \leq \phi-$ $m^{*}(F) \sup _{x \in F} \bar{\triangle}_{\phi}(x, E) \leq \phi-m^{*}(F) k \leq c_{\phi} k \phi-m(E)$. Hence, if $\phi-m(F)=$ 0 , then $\phi-p(F)=0$.

Remark 3.7. It is easy to show that the above statement is true for
$G=\left\{x \in E:{\overline{\triangle_{\phi}}}(x, E)<\infty\right\}$; hence Corollary 4.6 of [9] is a special case of Proposition 3.6.

4. Main theorems

A subset $E \subset \mathbf{R}^{d}$ is said to be $*$-strongly ϕ-regular (strongly ϕ-regular) if E is $\phi-p$ measurable and $0<\phi-m^{*}(E)=\phi-p(E)<\infty$ (if E is $\phi-p$ measurable and $0<\phi-m(E)=\phi-p(E)<\infty)$.

We list the next six lemmas essentially due to Raymond and Tricot (see Corollaries $7.1,7.2$, and 8.1 , Propositions 9.1 and 9.2 , and Corollary 9.5 of [5]).

Lemma 4.1. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then $\triangle_{\phi}(x, E)=1 \phi$-p.a.s. on E.

Lemma 4.2. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then $\bar{D}^{*}{ }_{\phi}(x, E)=1 \phi-m^{*}$.a.s. $(\phi-m . a . s$.$) on E$.

Lemma 4.3. If E is $\phi-p$ measurable and $0<\phi-p(E)<\infty$, then $\phi-m(E)=0$ if and only if $\bar{\triangle}_{\phi}(x, E)=\infty \phi-p . a . s$. on E.

Lemma 4.4. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, the following statements are equivalent :

1) $\phi-m^{*}(E)=\phi-p(E)$.
2) $\bar{\triangle}_{\phi}(x, E)=1 \phi-p . a . s$. on E.
3) $\triangle_{\phi}(x, E)=1 \phi-p . a . s$. on E.

Lemma 4.5. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, the following statements are equivalent :

1) $\phi-m(E)=\phi-p(E)$.
2) $D_{\phi}(x, E)=1 \phi$-p.a.s. on E.

Lemma 4.6. Let $\phi(t)=t^{k}$ where $k \in \mathbf{N}$. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, the following statements are equivalent :

1) $\phi-m(E)=\phi-p(E)$.
2) $\phi-m^{*}(E)=\phi-p(E)$.

The proofs of the next two lemmas are similar to those of Theorem 6.2 and Corollary 6.3 of [9], with the use of Lemmas 3.3 and 3.4.

Lemma 4.7. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then E is *-strongly ϕ-regular if and only if $\underline{D}_{\phi}^{*}(x, E)=1 \phi$-p.a.s. on E.

Lemma 4.8. If E is $\phi-p$ measurable, $\phi-p(E)<\infty$, and $\bar{\triangle}_{\phi}(x, E)<\infty$ ϕ-p.a.s. on E, then E is *-strongly ϕ-regular if and only if it is $*$-regular.

Now we state a decomposition theorem of Besicovitch type for packing measures.

Theorem 4.9. (Decomposition theorem) If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then the set of p-regular points of E is a p-regular set, and the set of p-irregular points of E is a p-irregular set.

Proof. First, by lemma 4.1, we only need to show that $\bar{\triangle}_{\phi}(x, \Delta)=1 \phi$-p.a.s. on Δ, where $\Delta=\left\{x \in E: \triangle_{\phi}(x, E)=1\right\}$.

By Proposition 3.5, $\bar{\triangle}_{\phi}(x, \Delta)=\bar{\triangle}_{\phi}(x, E) \phi-$ m.a.s. on \triangle.
By Proposition $3,6, \bar{\triangle}_{\phi}(x, \Delta)=\bar{\triangle}_{\phi}(x, E) \phi$-p.a.s. on \triangle.
Second, we must show that it is not ϕ-p.a.s. on $E \backslash \Delta$ that $\Delta_{\phi}(x, E \backslash \Delta)=$ 1.

By Proposition 3.5, on $E \backslash \Delta$ it is not ϕ-m.a.s. that $\Delta_{\phi}(x, E \backslash \triangle)=1$. Therefore, by Proposition 3.6 that $\phi-p\left(\left\{x \in E \backslash \triangle: \Delta_{\phi}(x, E \backslash \Delta)=1\right\}\right)=0$.

Theorem 4.10 (Propositions 11.1 and 11.2 of [4]) Let E be any set in \mathbf{R}^{d}. If $\phi-m^{*}(E)=\phi-p(E)<\infty$, then $\phi-m^{*}(A)=\phi-p(A)$ for any $\phi-m^{*}$ measurable set $A \subset E$. Further, if $\phi-m(E)=\phi-p(E)<\infty$, then $\phi-m(A)=\phi-p(A)$ for any set $A \subset E$.

Proof. It is immediate from the fact that $\phi-m$ and $\phi-p$ are Borel regular.

We remark that, if $\phi-m^{*}$ measurable $A \subset \Delta \phi$-p.a.s., then $\phi-m^{*}(A)=$ $\phi-p(A)$. The following theorem is the converse of this remark.

Theorem 4.11. Let E be $\phi-p$ measurable and $\phi-p(E)<\infty$. If $\phi-m^{*}(A)=\phi-p(A)$, where $A \subset E$, then $A \subset\left\{x \in E: \triangle_{\phi}(x, E)=1\right\}$ ϕ-p.a.s.

Proof. We may assume that A is a Borel set. Suppose that ϕ $p(A \backslash \Delta)>0$, where $\Delta=\left\{x \in E: \Delta_{\phi}(x, E)=1\right\}$.

Then $\phi-p(A \backslash \Delta)=\phi-m^{*}(A \backslash \Delta)$ by Theorem 4.10, and $\bar{\Delta}_{\phi}(x, A \backslash \Delta)=$ 1ϕ-p.a.s. on $A \backslash \Delta$ by Lemma 4.4. By Proposition 3.5, $\bar{\Delta}_{\phi}(x, E)=1 \phi$-m.a.s. on $A \backslash \Delta$. Combining this with Lemma 4.1, we obtain that $\Delta_{\phi}(x, E)=1 \phi-$ m.a.s. on $A \backslash \triangle$. Proposition 3.6 then yields $\Delta_{\phi}(x, E)=1 \phi$-p.a.s. on $A \backslash \Delta$, which is a contradiction.

Remark 4.12. If $\phi-p(A)>0$ for a subset A of a p-irregular set, then $\phi-m^{*}(A)<\phi-p(A)$.

Theorem 4.13. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then $\left\{x \in E: \Delta_{\phi}(x, E)=1\right\} \subset\left\{x \in E: D^{*}{ }_{\phi}(x, E)=1\right\} \phi$-p.a.s..(i.e., the set of
p-regular points of E is contained in the set of *-regular points of $E \phi$-p.a.s.)

Proof. We may assume that E is a Borel set. Let $\triangle=\{x \in E$: $\left.\Delta_{\phi}(x, E)=1\right\}$ and $D^{*}=\left\{x \in E: D^{*}{ }_{\phi}(x, E)=1\right\}$

By the decomposition theorem (Theorem 4.9), Δ is a p-regular set ; hence $*$-strongly ϕ-regular by Lemma 4.4. Since Δ is $\phi-p$ measurable, we have $\underline{D}^{*}{ }_{\phi}(x, \Delta)=1 \phi$-p.a.s. on \triangle, by Lemma 4.7. Thus, $\underline{D}^{*}{ }_{\phi}(x, E) \geq 1$ ϕ-p.a.s. on \triangle. Together with Lemma 4.2 and Proposition 3.6, we obtain that $D_{\phi}^{*}(x, E)=1 \phi-$ p.a.s. on \triangle.

Theorem 4.14. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then $\phi-m\left(D^{*} \backslash \Delta\right)=0$, where D^{*} is the set of *-regular points of E, and Δ is the set of p-regular points of E.

Proof. We may assume that E is a Borel set. Let $X=D^{*} \backslash \Delta$. Then X is *-regular, since D^{*} is *-regular and \triangle is a Borel set. Suppose that $\phi-$ $m(X)>0$. Then X is not $*-$ strongly ϕ-regular by Remark 4.12. By Lemma 4.8, it is not true that $\bar{\triangle}_{\phi}(x, X)<\infty \phi$-p.a.s on X. In fact, $\bar{\triangle}_{\phi}(x, X)=\infty$, ϕ-p.a.s., on X using again Lemma 4.8.. For, let $X_{1}=\left\{x \in X: \bar{\triangle}_{\phi}(x, X)<\right.$ $\infty\}$. Then $\phi-p\left(X_{1}\right)=0$, since X_{1} is $*-$ regular and $\bar{\triangle}_{\phi}\left(x, X_{1}\right) \leq \bar{\triangle}_{\phi}(x, X)<$ ∞ on X_{1}. By Lemma 4.3, $\phi-m(X)=0$. This is a contradiction.

Corollary 4.15. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$, then $\phi-m(D \backslash \Delta)=0$, where D is the set of regular points of E, and Δ is the set of p-regular points of E.

Proof. Clearly, D is a subset of $D^{*} \phi-$ m.a.s.. From Theorem 4.13 and Theorem 4.14 follows our result.

Theorem 4.16. Let $\phi(t)=t^{k}$, where $k \in \mathbf{N}$. If E is $\phi-p$ measurable with $\phi-p(E)<\infty$, then $\Delta \subset D \phi$-p.a.s. and $D=D^{*} \phi$-m.a.s., where
\triangle, D, and D^{*} are the set of p-regular, regular, and *-regular points of E respectively.

Proof. First, Δ is p-regular; hence $\phi-m(\Delta)=\phi-p(\Delta)$, by Lemma 4.4 and Lemma 4.6. By Lemma 4.5, Δ is regular. Thus $D_{\phi}(x, \Delta)=1 \phi-\mathrm{m}$. a.s. on Δ. Since $D_{\phi}(x, E \backslash \Delta)=0$ on $\Delta($ Corollary 2.4 of $[1]), D_{\phi}(x, E)=1$ $\phi-$ m.a.s. on Δ. By Proposition 3.6, it follows that $D_{\phi}(x, E)=1 \phi$-p.a.s. on Δ. That is, $\Delta \subset D \phi$-p.a.s..

Second, trivially $D \subset D^{*} \phi-$ m.a.s.. Noting that $\phi-m\left(D^{*} \backslash \Delta\right)=0$ by Theorem 4.14 and $\Delta \subset D \phi-$ m.a.s., we conclude that $\phi-m\left(D^{*} \backslash D\right)=0$.

We define E to be a Y-set if it is included in a countable union of rectifiable arcs [9].

Theorem 4.17. If E is $\phi-p$ measurable and $\phi-p(E)<\infty$ for $\phi(t)=t$, then Δ, the set of p-regular points of E, is the maximal Y-set of $E \phi$-p.a.s.

Proof. Since Δ is $\phi-p$ measurable, Δ is $\phi-m$ measurable. By Corollary 6.4 of [9], $\Delta=\Delta_{1} \cup \Delta_{2}$, where Δ_{1} is a Y-set and $\phi-p\left(\Delta_{2}\right)=0$. We easily show that Δ_{1} is strongly regular.

By Remark 4.12, we see that there is no strongly regular set A such that $A \subset E \backslash \triangle$ and $\phi-p(A)>0$.

Hence Δ is the maximal Y-set of $E \phi$-p.a.s.

REFERENCES

[1] K.J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, 1985).
[2] M.de Guzmán, Differentiation of Integrals in \mathbf{R}^{n}. (Springer Lecture

Note in Mathematics 481, 1975).
[3] M. Munroe, Measure and Integration (Addison-Wesley, 1971).
[4] X.S. Raymond and C. Tricot, Packing regularity of sets in N-space, Centre de Recherches Mathematiques-1419, Octobre 1986, Université de Montreal.
[5] X.S. Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Camb. Phil. Soc. 103(1988), 133-145.
[6] C.A. Rogers, The Hausdorff measures (Cambridge University Press, 1970).
[7] S.J. Taylor and C. Tricot, The packing measure of rectifiable sets, Real Analysis Exchange, Vol.10, No. 1 (1984-85), 58-67.
[8] S.J. Taylor and C. Tricot, Packing measure, and it evaluation for a Brownian path. Trans. Amer. Math. Soc. 288(1985), 679-699.
[9] S.J. Taylor and C. Tricot, The packing measure of recitifiable subsets of the plane, Math. Proc. Camb. Phil. Soc., 99(1986), 285-296.
[10] C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc., 91(1982), 57-74.

Received June 14, 1990

