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 1. Introduction

 We use several distinct outer measures to investigate the size of thin

 sets in Rd. In this paper, we are interested in only three outer measures,

 <f>-m (Hausdorff measure), (*-Hausdorff measure), and <f>-p (packing

 measure), based on a monotone function <f>.

 In [5], it was shown that <f> - m(E) < <f> - m*(E) < <j> - p(E) for any set

 E C Rd.

 We will investigate some other relations of the aforementioned outer

 measures.

 We adopt a new definition of »-regularity, and p-regularity by using *-

 Hausdorff and packing measures, as regularity is defined by using Hausdorff

 measure. We will show that the decomposition theorem holds for packing

 measure as it does for Hausdorff measure [1]. Further, every subset of a

 p-regular set has identical *-Hausdorff and packing measures, whereas every

 subset having positive packing measure of a p-ir regular set cannot have iden-

 tical *-Hausdorff and packing measures. Futhermore, the set of p-regular

 points of a given set is contained in the set of »-regular points of the given

 set </>~p.a.s., and their difference is of <f>-m measure zero. A similar result is
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 obtained for the set of p-regular points and the set of regular points of the

 given set. If E is <£-p-measurable and <f>-p(E) < oo for <1>(t) = t, then we can

 characterize the maximal y~set of E <ļ>-p.&.s. by the set of p-regular points

 olE.

 2. Preliminaries

 Let <ļ> : [0, 1] - ► R be a function which is increasing, continuous with

 <¿(0) = 0, <1>(h) > 0 for h > 0, and satisfies a smoothness condition. The

 smoothness condition is that there exists > 0 such that <f>{2 s) < c^4>{s)

 for 0 < s < ì.

 The HausdorfF measure of a set E C Rá is defined as

 OO

 <f> - m(E) = lim inf{ V] <f>( diam G„) : E C diam Gn < Í}
 o - ►O

 n=l

 The *-HausdorfF measure of a set E C Rd (see [5]) is defined as <f> -

 m*(E) = sup{¿ - M*(F) :FCE}, where

 OO

 <f> - M*(F) = lim inf{ V] <ļ>( diam Bn ) : F C diam Bn < 6,
 6 - ►O

 n=l

 Bn are open balls centered in F}

 We note that <ļ>-m(E ) < <ļ>-m*(E) < c <1>-m(E ) for a suitable constant

 c > 0 [5].

 We also note that an equivalent definition of *-Hausdorff measure is

 obtained if <f> - m* is defined for centered closed balls instead of centered

 open balls.

 We recall the packing measure <f> - p (see [9]) which is obtained by a

 two-stage definition using the pre-measure <j> - P defined for bounded sets
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 E C Rd as follows :

 OO

 <f> - P (E) = lim sup{ <ļ>( diam Bn) : Bn are disjoint open
 6 - ►O ^

 n=l

 balls centered in E with diam Bn <*}

 It is immediate from the definition that <ļ> - P (E) = <f> - P (E).

 We employ Method I by Munroe [3] to obtain the outer measure :

 OO

 <f> - p(E) = inf{^^ (j) - P(£?n) : En are bounded , E C U^Ļļ-En}
 n- 1

 We note that <f> - m, <f> - m*, and <f> - p are metric outer measures ([1],

 [5], [8]) ; hence the corresponding classes of measurable sets include the Borei

 sets. Further, <f> - m and <j> - p are Borei regular and inner regular ([1], [8]).

 Also we see that if E is <ļ> - p measurable, then E is <ļ> - m measurable and

 <f> - m* measurable. Using the fact that <f> - p is Borei regular, Borei sets are

 <f> - m measurable and <j> - m* measurable, and <f> - m < <f> - m* < <f> - p, we

 easily obtain the above result.

 3. Density behaviour for a general measure fx

 Throughout this section we assume that ß is a finite measure defined on

 the Borei subsets of R¿. This implies that /z is inner regular.

 If Br{x) denotes the closed ball centered at x with radius r, we define

 (^-densities by

 Hu*(x) = 'liminf fi(Br(x))/<f>(2r)
 rļO

 Dll^>{x) = iimsnpļi(Br(x))/<ļ>(2r)
 rļO

 We obtain equivalent (¿»-densities using Br(x)° instead of Br(x). Now,

 we state four lemmas due to Raymond and Tricot (see Theorem 1.1 of [5]).
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 Lemma 3.1. For any Borei set E with <j> - m*(E) < oo,

 fi(E) ><ļ>- m*(E) :xeE}.

 Lemma 3.2. For any Borei set E,

 H(E) <<j> - m*(E)s'ip{Dll*(x) : x € E }.

 Lemma 3.3. For any Borei set E with <f> - p(E) < oo,

 H(E) ><j>- p(E)mf{D/(x) :xeE}.

 Lemma 3.4. For any Borei set E,

 H(E) <<t>- p^sup-fZ^^x) : x G E).

 In the sequal, we will often apply the above lemmas to the measures

 /¿(i*1) = <f> - m(E fi F ), <f> - m*(E fi F), and <ļ> - p(E fi F), so we introduce

 some notations for these cases. If <f> - p(E) < oo and p(F) = <f> - p(E fi F),

 put

 D ¿{x) = A¿(a?, E) = lim sup ^ - p(Br(x) fl E)/<j>(2r)
 rļO

 £#•*(*) = AJ*» E) = %inf ^ ~ P(Br(x) n E)ļ <f>(2r)
 ^ rļO

 Similarly, if <t> - m(E) < oo and n(F) = <ļ> - m(E fi F), put

 DS(X) = Ď^x^) and D^{x) = Df(x,E)
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 If <f> - m*(E ) < oo and p(F) = <f> - m*(E fl F), in a similar manner, we can

 define D* ^{x^E) and D? ¿(x^E).

 If A^(x, E) = A^(x, E ), we write A¿(x, E) for the common value. Sim-

 ilarly, we write D^x, E ) and D* ¿(x, E ). In particular, when 0 < <j> - p(E) <

 oo for (f> - p measurable set E, a point x 6 E is called a p-regular point of

 E if A^(x, E) = A^(x, E) = 1 ; otherwise a: is a p-irregular point. When

 0 < <f> - p(E) < oo for <f> - p measurable set £7, E is said to be p-regular if

 <ļ> - p-almost all of its points are p-regular, and p-irregular if almost all of its

 points are p-irregular. Similarly, we can define regularity and *-regularity

 for <f> - m and <f> - m*.

 Next, we introduce two useful propositions which we shall require to

 prove the decomposition theorem for packing measures.

 Proposition 3.5. Suppose that E is <1>-p measurable and <1>-p(E) < oo.

 Then A (/>(x,E'F) = 0 <f>-m.a.s. on F for <j> - p measurable set F C E.

 Further, A^x^) = A¿(x,E) <ļ>-m.a.s. on F.

 Proof. See Corollary 7.4 of [4].

 Proposition 3.6. Let G = {x £ E : A^(x,E) < fc}, where E is <f> - p

 measurable and <f> - p(E) < oo, and k is a positive constant. For any <ļ> - p

 measureble set F C G, if <t> - m(F) = 0, then <f> - p(F) = 0.

 Proof. As in the proof of Proposition 3.5, let E and F be Borei sets.

 Using Lemma 3.2 with fi(E) = <j> - p(E D F ), we obtain <ļ> - p(F) < <ļ> -

 m*(F) supieF A^(x,i?) < <f>-m*(F ) k < c^k(f>-m(E). Hence, 'l<ļ>-m(F) =

 0, then <f> - p(F) = 0.

 Remark 3.7. It is easy to show that the above statement is true for
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 G = {x € E : A¿(x, i?) < e»} ; hence Corollary 4.6 of [9] is a special case of

 Proposition 3.6.

 4. Main theorems

 A subset E C is said to be »-strongly (^-regular (strongly (^-regular)

 if E is <f> - p measurable and 0 < <}> - m*(E) = <j> - p(E) < oo (if E is <f> - p

 measurable and 0 < <f> - m(E) = <f> - p(E) < oo).

 We list the next six lemmas essentially due to Raymond and Tricot (see

 Corollaries 7.1, 7.2, and 8.1, Propositions 9.1 and 9.2, and Corollary 9.5 of

 [5])-

 Lemma 4.1. If E is <f> - p measurable and <f> - p(E) < oo, then

 A ^(x,E) = 1 <f>-p.a.s. on E.

 Lemma 4.2. If E is <f> - p measurable and <f> - p(E) < oo, then

 D ^(x,£?) = 1 <f>-m*.a.s. (<1>-m.a.s.) on E.

 Lemma 4.3. If E is <j> - p measurable and 0 < <f> - p(E) < oo, then

 <f> - m(E ) = 0 if and only if A^(x,£?) = oo <f>-p.a.s. on E.

 Lemma 4.4. If E is <f> - p measurable and <f> - p(E) < oo, the following

 statements are equivalent :

 1) <ļ> - m*(E) = <f> - p(E).

 2) A ¿{x,E) = 1 <f>-p.a.s. on E.

 S) A $(x,E) = 1 <1>-p.a.s. on E.

 Lemma 4.5. If E is <f> - p measurable and <f> - p(E ) < oo, the following

 statements are equivalent :
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 1) <t> - m(E) = <j> - p(E).

 2) D^x^E) = 1 <f>-p.a.s. on E.

 Lemma 4.6. Let <j>(t) = tk where k G N. If E is <f> - p measurable and

 <f> - p(E) < oo, the following statements are equivalent :

 1) <j> - m(E) = <j> - p(E).

 2) <t> - m*(E) = 4> - p(E).

 The proofs of the next two lemmas are similar to those of Theorem 6.2

 and Corollary 6.3 of [9], with the use of Lemmas 3.3 and 3.4.

 Lemma 4.7. If E is <f> - p measurable and <ļ> - p(E) < oo, then E is

 *-strongly <1>-regular if and only if D_* ¿(x, E) = 1 <1>-p.a.s. on E.

 Lemma 4.8. If E is <f>-p measurable, <j>-p(E) < oo, and A^(x, E) < oo

 <f>-p.a.s. on E, then E is *-strongly <f>-regular if and only if it is * -regular.

 Now we state a decomposition theorem of Besicovitch type for packing

 measures.

 Theorem 4.9. (Decomposition theorem) If E is <j> - p measurable and

 <f> - p(E) < oo, then the set of p-regular points of E is a p-regular set, and

 the set of p-irregular points of E is a p-irregular set.

 Proof. First, by lemma 4.1, we only need to show that

 A^(x, A) = 1 <^-p.a.s. on A, where A = {x e E : A¿(x, E) = 1}.

 By Proposition 3.5, 5¿(®, A) = A¿(x, E) <f>- m.a.s. on A.

 By Proposition 3,6, A^(x, A) = A¿(x,E) <£-p.a.s. on A.

 Second, we must show that it is not ^»-p.a.s. on E' A that A¿(x, E' A) =
 1.
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 By Proposition 3.5, on E' A it is not <^-m.a.s. that A¿(x,JE7'A) = 1.

 Therefore, by Proposition 3.6 that <1> - p({x G E' A : A¿(x, E'A) = 1}) = 0.

 Theorem 4.10 (Propositions 11.1 and 11.2 of [4]) Let E be any set in

 Rd. If <f> - m*(E ) = <t> - p(E) < oo, then <ļ> - m*(A ) = <f> - p(A) for any

 <f> - m* measurable set A C E. Further, if <f> - m(E) = <ļ> - p(E) < oo, then

 <ļ> - m(A) = <j> - p(A) for any set A C E.

 Proof. It is immediate from the fact that 4> - m and <f> - p are Borei

 regular.

 We remark that, if <f> - m* measurable A C A <^-p.a.s., then <f> - m*(A) =

 <f> - p(A). The following theorem is the converse of this remark.

 Theorem 4.11. Let E be <f> - p measurable and <f> - p(E) < oo. If

 <f> - m*(A) = <f> - p(A), where A C E, then A C {x € E : A 4>{x,E) = 1}
 <1>-p.a.s.

 Proof. We may assume that A is a Borei set. Suppose that <f> -

 p(A'A) > 0, where A = {x e E : A ¿(z, ¿2) = 1}.

 Then <f>- p(A'A) = <f> - m*(A'A) by Theorem 4.10, and A^(x,j4'A) =

 1 0-p.a.s. on A' A by Lemma 4.4. By Proposition 3.5, Ā^(x, E) = 1 ^-m.a.s.

 on A' A. Combining this with Lemma 4.1, we obtain that A ¿(x,E) = 1 <f>-

 m.a.s. on A' A. Proposition 3.6 then yields A¿(x, E) = 1 ^-p.a.s. on A' A,
 which is a contradiction.

 Remark 4.12. If <j> - p(A) > 0 for a subset A of a p- irregular set, then

 <ļ> - m*{A) < <f> - p(A).

 Theorem 4.13. If E is <ļ> - p measurable and <f> - p(E) < oo, then

 {x e E : A¿(x, E) = 1} C {x € E : D*¿(x,E) = 1} <f>-p.a.s..(i.e., the set of
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 p-regular points of E is contained in the set of * -regular points of E <f>-p.a.s.)

 Proof. We may assume that E is a Borei set. Let A = {x £ E :

 A 4,{x,E) = 1} and D* = {x e E : D%(x,E) = 1}

 By the decomposition theorem (Theorem 4.9), A is a p-regular set ;

 hence *-strongly «^-regular by Lemma 4.4. Since A is <ļ> - p measurable, we

 have £%(x,A) = 1 <£-p.a.s. on A, by Lemma 4.7. Thus, D_* ¿(x, £?) > 1

 <^-p.a.s. on A. Together with Lemma 4.2 and Proposition 3.6, we obtain

 that D^^x^E) = 1 ^-p.a.s. on A.

 Theorem 4.14. If E is <ļ> - p measurable and <f> - p(E) < oo, then

 <f> - m(D*' A) = 0, where D* is the set of *-regular points of E, and A is

 the set of p-regular points of E .

 Proof. We may assume that E is a Borei set. Let X = D*' A. Then

 X is *-regular, since D* is *-regular and A is a Borei set. Suppose that <ļ> -

 m(X) > 0. Then X is not *-strongly ^-regular by Remark 4.12. By Lemma

 4.8, it is not true that A^(x, X) < oo <^-p.a.s on X. In fact, A^(®, X) = oo,

 ^-p.a.s., on X using again Lemma 4.8.. For, let Xi = {x € X : A^,(x, X) <

 oo}. Then <1>-p(X i) = 0, since .Xi is *-regularand A¿(x, Xi) < A^(x, X) <

 oo on Xi. By Lemma 4.3, <)> - m(X) = 0. This is a contradiction.

 Corollary 4.15. If E is <j> - p measurable and <f> - p(E) < oo, then

 <ļ> - m(D' A) = 0, where D is the set of regular points of E, and A is the set

 of p-regular points of E.

 Proof. Clearly, D is a subset of m.a.s.. From Theorem 4.13 and

 Theorem 4.14 follows our result.

 Theorem 4.16. Let <1>(t) = tk, where k 6 N. If E is <j> - p measurable

 with <f> - p(E) < oo, then A C D <f>-p.a.s. and D = D* <f>-m.a.s., where
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 A, D, and D* are the set of p-regular, regular , and *-regular points of E

 respectively.

 Proof. First, A is p-regular; hence <f>- m(A) = <j>- p(A), by Lemma 4.4

 and Lemma 4.6. By Lemma 4.5, A is regular. Thus D^x, A) = 1 ^-m.a.s.

 on A. Since D<j,(x,E' A) = 0 on A (Corollary 2.4 of [1]), D$(x,E) = 1

 ^-m.a.s. on A. By Proposition 3.6, it follows that E) = 1 <^>-p.a.s. on

 A. That is, A C D<f>- p.a.s..

 Second, trivially D C D* <^-m.a.s.. Noting that <f> - m(D*'A) = 0 by

 Theorem 4.14 and A C D <¿>-m.a.s., we conclude that 4> - m(D*'D ) = 0.

 We define E to be a Y"-set if it is included in a countable union of

 rectifiable arcs [9].

 Theorem 4.17. If E is <f>-p measurable and <1>-p(E) < oo for <1>{t) = t,

 then A, the set of p-regular points of E, is the maximal Y -set of E <ļ>-p.a.s.

 Proof. Since A is <f> - p measurable, A is <f> - m measurable. By

 Corollary 6.4 of [9], A = Ai U A2, where Ai is a F-set and <f> - p( A2) = 0.

 We easily show that Ai is strongly regular.

 By Remark 4.12, we see that there is no strongly regular set A such that

 A C E' A and <f> - p(A ) > 0.

 Hence A is the maximal K-set of E <£-p.a.s.
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