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 A Fuge on Bernstein Sets

 Abstract. A subset B of a Polish space X is called Bernstein set

 if both B and X ' B meet every uncountable, closed subset of X. Such

 sets neither are Lebesgue measurable nor have the property of Baire, and

 as such, are of interest to analysts, topologists and descriptive set theorists

 alike. Taking advantage of the algebraic structure of R*, we exhibit a family

 of 2C homogeneous Bernstein sets in R. We also show that if X and Y are

 uncountable Polish spaces and f : X -* Y is continuous, then Bernstein sets

 are preserved under inverse images if and only if / is at most u>-to-l.

 0. Prelude. We assume the axiom of choice holds. A subset B of a

 Polish space X is called Bernstein set if both B and X ' B meet every un-

 countable, closed subset of X. In [1], Kuratowski proved that there exist un-

 countable, rigid (i.e., admitting the identity as the only self-homeomorphism)

 subsets of R. I have been informed, though I do not know by whom, that his

 technique has been used to construct a nonhomogeneous Bernstein set. Since

 there are 2C Bernstein sets in R, there must be 2C nonhomogeous Bernstein

 sets in R. For if B i is a Berstein set and B<i is a nonhomogeneous Bernstein

 set, then [ B' D (- oo,0)] U [Bļ fi (0, oo)] is a nonhomogeneous Bernstein set.

 We will show, on the other hand, that there are 2C homogeneous Bernstein

 sets in R by constructing a family of 2C additive subgroups of R, each of

 which is also a Bernstein set.

 Given a Polish space X, if card (X) < u>, then every subset of X is a

 Bernstein set. To see that Bernstein sets exist in uncountable Polish spaces,
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 well order the set of uncountable closed subsets of such a space X as {Ca'a <

 c}, and then proceed inductively to choose a pair of points from each CQ,

 one to be in B and one not to be in B. (Ah, Shakespeare; but see [3] for a

 discussion of Bernstein sets.) We will begin by generalizing the notion of a

 Bernstein set, and then will consider these generalized Bernstein sets in the

 presence of certain algebraic structures.

 Let X be a set and let !F C V(X). A set B C X such that both

 B and X ' B meet every F € F will be called an P-Bernstein set; equiva-

 lent^, neither B nor X ' B contains an element of T. For example, if X is

 a space and T is the collection of all nonvoid open subsets of X, then the

 ^"-Bernstein sets are precisely those dense subsets of X having dense com-

 plements. If for some F € T , card(F) < 2 then there can be no ^"-Bernstein

 set. On the other hand, if card(fl.F) > 2, or if T is a pairwise disjoint family

 of sets, each with cardinality > 2, then there exists an ^"-Bernstein set. Now

 suppose g : X - ► X is a bijection such that for all F G T, g-1 (F) G T , and

 suppose B is an ^"-Bernstein set. Then if g(B) or g(X ' B ) contains some

 F 6 J' so does B or X ' B. Hence g(B) is an ^"-Bernstein set. Similarly, if

 for all F € P, g(F) € T then g~l(B) is an ^"-Bernstein set. Of course, in

 the case where X is a Polish space and T is the set of all uncountable closed

 subsets of X , B is simply a Bernstein set. We begin with a generalization

 of the result that every uncountable Polish space contains a Bernstein set.

 Throughout this note, A denotes a regular cardinal.

 0.0. Theorem. (Bernstein, 1908) Let X be a set and let T C V(X) such

 that card(^") = A. If for all F € card (.F) > A then there are > 2X
 ^"-Bernstein sets in X.

 Proof: We repeat the proof of Bernstein's theorem except that we choose

 three points at each stage rather than two. Well order T as {i^la < A},

 and suppose a;a,ił®o,2 and xa¿ have been chosen for all a < ß < A. Choose
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 three distinct points Xßti,Xßt2 and Xß^ in Fß ' (Ua<0{xaji,a:a)2,a;a,3})- Set

 B = Ua<A{xo,i,x0)2}. Then B meets every F G F, and as U{xa)3} C
 X ' B, so does X ' i?. Now let = U0<A{®a,i} and note that for every
 A' C A, B N i4' is an ^"-Bernstein set. Since there are 2A subsets of A, there

 are > 2a ^"-Bernstein sets in X.

 0.1. Corollary. Every uncountable Polish space contains 2C Bernstein
 sets.

 1. Fugue. Now let G be a group. If S C G then ( S ) denotes the

 smallest subgroup of G containing 5. For A,B C G, AB = {ab'a € A, 6 G

 B }. We write ( x ) for ({x}), (5, x) for ( S U {x}), ( A,B ) for (A U B ), aB for

 {a}B, etc.

 We introduce two notions here. Let G be a group and let k be the least

 cardinal such that for all g 6 G and n € N, xn = g has at most k solutions.

 Then k - 1 is the torsion degree of G. If k is the least cardinal such that for

 all y,a2,...,am G G, with g £ (a2,...,am), and for all m,nx,...,nm G N,

 the equation xntaļXn 2 • • • amxnm = g has most k solutions, then k - 1 is

 the polytorsion degree of G. We will denote the torsion degree of G by f{G)

 and the polytorsion degree of G by p(G). Note that if G is abelian, then

 f(G) = p(G), and r(G) = 0 if and only if G is torsion free. Whether G is

 commutative or not, f(G) < p(G). One of the referees has pointed out that

 "the semi-direct product of the free abelian group F on uncountably many

 generators xQ and the free abelian group on generators a, 6, with actions

 x~xaxa = b and x~1bxa = a for each a ... has uncountable polytorsion

 degree, but countable torsion degree." Hence, the torsion degree and the

 polytorsion degree are not, in general, the same.

 1.1. Lemma. Let G be a group of cardinality A with p(G) < A. Assume

 A > u). Let A be a subgroup of G such that card(A) < A and suppose B C
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 G ' A such that card(¿?) < A. Let X C G'(iUß) of cardinality A. Then

 {(A, x)'x G X and (A, x) D B = 0} has cardinality A.

 Proof: Let S be the set of all finite strings of the form xni aļXn 2 • • • amxnm ,

 and note that card(S) = max{w, card(A)} < A. For each b G B let X(b) =

 {x G G|á = ò;â e 5}, where s = b means s thought of as a product. Then

 card(X(6)) < max{/>(G), uj, card(A)}, and it follows that card(U6gBX(6)) <

 A. Now, x G X(b) if and only if b € (A,x). Thus, there are < A x G X for

 which (A,x) Íi5 / 0. Therefore, {(^4, x)'x € X and (A,x) fl B = 0} has

 cardinality A.

 1.2. Lemma. Suppose {Ga|a < A} is a collection of subgroups of G such

 that a < ß => G a C Gß, then {Ua</jC?a} is a collection of subgroups of G

 for all ß < A.

 A subgroup of any group G which is also an ^"-Bernstein set will be call

 an T-Btrnsitin subgroup.

 1.3. Theorem. Let G be a group of cardinality A > oj, and let T C 'P(G)

 such that for each F G T, card (.F) = A, and p(G) < A. Then there is an

 ^"-Bernstein subgroup of G.

 Since the proof follows, mutatis mutandis , that of Theorem 4' below, we

 omit it here.

 1.4. Corollary. Every complete separable metric topological group G with

 p(G) < card(G) contains a Bernstein subgroup.

 Let us say that a group G is (left) F -preservative if for every F € F

 and every g G G, gB G T. We will say only "preservative" if T is the set

 of uncountable closed subsets. Note that by our earlier remarks, if G is T-
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 preservative and B is an ^"-Bernstein set, then gB is an ^"-Bernstein set for

 all g 6 G. Obviously R is preservative.

 We now turn our attention to topological rings, and so, from now on,

 we will use juxtaposition to indicate multiplication in the ring. We assume

 that each ring in question contains a dense, isomorphic copy of Qk for some

 k < u>. Thus Q{S) denotes the smallest subgroup of (R, +) which contains

 S and is closed under multiplication by q G Q. It is easily verified that if

 S = Q(S) then Q(5", r) = S + Qr for all r 6 R. When we write f(R), we

 mean t((R, +)).

 For the rest of this section, we assume that card(i2) = A > w, and that

 T C V(R) such that card (J7) = A and for each F e F , card(F) = A.

 1.1' Lemma. Assume f(R) < A. Let A = (A) C R with card(^4) < A,

 and suppose B C R ' A with card(Z?) < A. Let X C R ' (A U B) with

 card(X) = A. Then {(>1, x)'x € X and (A,x) fl B = 0} has cardinality A.

 1.2' Lemma. If {S0|a < A} C V(R) such that a < ß =*► SQ C Sß and
 for all a < A, SQ = ( SQ ), then Ua<0 SQ = (U a<ßSQ). If in addition, each

 SQ = QSa, then U5"a = Q(USa).

 1.3'. Theorem. Let R be a ring of cardinality A and let f(R) < A.
 Let T C V(R) such that card(^r) = A and for each F £ T, card(F) = A.

 Then there are > 2a ^"-Bernstein subgroups B of R such that B = QB.

 Moreover, there is a family {!?<*} of A distinct ^"-Bernstein subgroups such

 that a < ß =*► Ba C Bß.

 Proof: Let {i^a|a < A, A even} be a well-ordering of T. Let ®o € Fņ and

 set Qo = Qx0. Then let x' € Fo n Qo and set Qi = Q0 + Qxi. Let
 xo G Fo ' Q i and set P0 = Pļ = {x0}. Suppose Qa and PQ have been chosen

 for all a < ß < A, ß even. Let Xß 6 Fß ' ((Ua</jQa) U (Ua</?Pa)) such that

 [Ua</9(Qa + Qz/0] n [Ua<^PQ] = 0 and set Qß = U a<ßQa + Qxß. Such
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 an Xß exists by Lemma 1.1'. Next let Xß+i E Fß ' ( Qß U (Ua</?Pa)) such

 that (Qß + Qx/?+i)n(Ua</jPa) = 0 and set Qß+i = Qß + Qxß+ 1- Then let

 Xß £ Fß ' Q^+i and set P/j = P/3+1 = (Ua</?Pa)U {x^}. Take i? = Ua<AÍ?a-

 Clearly B is an ^"-Bernstein set. By Lemma 1.2', B = QJ5.

 Let A be the set of odd ordinals < A, and let A' C A. For all ß < A, let

 x'ß = xß for ß E A s A' and let x'ß = 0 for ß E A'. Modify the proceeding

 induction scheme as follows. Set Q'0 = Q 0 and define Q'ß = (Ua</j<5a) +

 Qx'ß, while keeping everything else the same. Then B' = Ua<AQ'a is an

 ^"-Bernstein subgroup of R since for every even ordinal ß, x'ß E B' D Fß and

 %ß 6 Fß ' B' . Now let ß E. A'. If Xß G B' then there is a least ordinal

 7 such that Xß E Q'y. We must have Xß = a + qx 7 for some a E Ua<7Q'a

 and q E Q ' {0}. However, if 7 < ß then Xß E U a<-rQa, contradicting

 the original choice of Xß. On the other hand, if ß < 7 then Xß - a -

 qxy =>• ^(xß - a) - Xy E U a<yQa which is also a contradiction. Therefore,
 B' fi {xß'ß E A '} = 0. Since there are 2* subsets of A , there are > 2*

 ^"-Bernstein subgroups B of R such that B = Q B.

 Now let Bq be the ^"-Bernstein subgroup of R formed by taking A' = A

 above. Suppose Ba has been chosen for all a < ß < A, ß even. Set Bß+i =

 ((Ua<ßBa),Xß+i). Then {Bo, B', B$, • • • , Bu+i, • • •} is an increasing family

 of A ^"-Bernstein subgroups of R. We reason as in the proceeding paragraph

 to show that a ß =*► Ba ^ Bß. If a < ß, ß E A, and Xß E U a<ßBa, then

 Xß = P1XQI H

 ßi is odd and p,-, qi E Q, and a' < • • < am, ß' < • • • < ßn. Clearly ßn < ß.

 If am < ß then the equation can not hold (see the preceding paragraph). If

 ^ then PmXam ~ Xß Pi® ai " " " Pm- 1 ®orm_i QlXßi ' " ' QnXßn G

 Ua<am Qot which is also impossible.

 1.4'. Corollary. Every perfect complete separable metric topological ring

 containing a dense isomorphic copy of Qk where k < u (such as R or C)

 contains 2C Bernstein subgroups B such that B = (B). Moreover, there are
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 2C families {Ba'a < 2W} of Bernstein sets with Ba = (Ba) such that if a < ß

 then Ba C Bß.

 2. Coda. We include one more result.

 2. Theorem. Let X and Y be uncountable Polish spaces and let f : X -* Y

 be continuous. Then for every Bernstein set B C Y, f~1(B) is a Bernstein

 set in X if and only if for every y € Y, card (/-1(y)) < w.

 Proof: if) Assume the hypotheses, let B C Y and suppose there is an un-

 countable closed subset C C f~1(B). Then /(C) C B and /(C) is analytic.

 Moreover, /(C) is uncountable because / is at most a>-to-l. Since every

 uncountable analytic set contains a Cantor set, B is not a Bernstein set.

 only if) Suppose for some y G Y, card (F-1 (y)) > u;. Let B be a

 Bernstein set in Y such that y G B. Then /-1(J5) contains the uncountable

 closed set /-1(y) and so is not a Bernstein set.
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