Measures With Prescribed Marginals, Extreme Points and Measure Preserving Transformations

Let $(X, \mathcal{A}, \lambda)$ and (Y, \mathcal{B}, ν) be two probability spaces. Let $M(\lambda, \nu)$ be the collection of all probability measures μ on the product σ-field $\mathcal{A} \times \mathcal{B}$ of $X \times$ Y such that the first and second marginals of μ are λ and ν, respectively, i.e., $\mu_{1}(A)=\mu(A \times Y)=\lambda(A)$ for every A in \mathcal{A}, and $\mu_{2}(B)=\mu(X \times B)=\nu(B)$ for every B in \mathcal{B}. The set $M(\lambda, \nu)$ is convex. The extreme points of this set have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss (1965) when $X=Y, \mathcal{A}=\mathcal{B}, \lambda=\nu$ and the probability space has some additional structure. Let T be a measure preserving transformation from X to Y, i.e., T is a measurable transformation from X to Y, and $\lambda\left(T^{-1} B\right)=\nu(B)$ for every B in \mathcal{B}. We show that every such transformation gives an extreme point of $M(\lambda, \nu)$. The basic idea is to build a probability measure μ_{T} in $M(\lambda, \nu)$ sitting on the graph $G=\{(x, T x) ; x \in X\}$ of T. But the graph G of T need not be available in the product σ-field $\mathcal{A} \times \mathcal{B}$. See Rao and Rao (1981, p.17) or Rao (1969). We overcome this difficulty by proceeding as follows and obtain a measure μ_{T} for which G is a thick set.

Let P_{1} be the projection map from $X \times Y$ to X. We claim that the graph G has the property: for every E in $\mathcal{A} \times \mathcal{B}, P_{1}(E \cap G) \in \mathcal{A}$. For, let $\mathcal{E}=\{E \in$ $\left.\mathcal{A} \times \mathcal{B} ; P_{1}(E \cap G) \in \mathcal{A}\right\}$. One can show that \mathcal{E} is closed under complementation and countable unions, and contains all measurable rectangle sets. Hence $\mathcal{E}=\mathcal{A} \times \mathcal{B}$. Define a set function μ_{T} on $\mathcal{A} \times \mathcal{B}$ by

$$
\mu_{T}(E)=\lambda\left(P_{1}(E \cap G)\right) \text { for } E \text { in } \mathcal{A} \times \mathcal{B}
$$

THEOREM. μ_{T} is an extreme point of $M(\lambda, \nu)$.
Proof. It is easy to check that μ_{T} is a probability measure on $\mathcal{A} \times \mathcal{B}$. We now check that μ_{T} has the prescribed marginals. Let $A \in \mathcal{A}$. Then $\mu_{1}(A)=$ $\left.\mu_{T}(A \times Y)=\lambda\left[P_{1}((A \times Y) \cap G)\right)\right]=\lambda\left(A \cap T^{-1} Y\right)=\lambda(A)$. Let $B \in \mathcal{B}$. Then
$\mu_{2}(B)=\mu_{T}(X \times B)=\lambda\left[P_{1}((X \times B) \cap G)\right]=\lambda\left(X \cap T^{-1} B\right)=\lambda\left(T^{-1} B\right)=\nu(B)$, since T is measure preserving. We now claim that G is a thick subset of $X \times Y$ under μ_{T}, i.e., the outermeasure of $G, \mu_{T}^{*}(G)=1$. For, if E is any set in $\mathcal{A} \times \mathcal{B}$ containing G, then $P_{1}(E \cap G)=X$. Finally, we assert that μ_{T} is an extreme point of $M(\lambda, \nu)$. Suppose $\mu_{T}=(1 / 2)(\zeta+\eta)$ for some ζ and η in $M(\lambda, \nu)$. It is obvious that $\zeta^{*}(G)=\eta^{*}(G)=1$. Further, for any E in $\mathcal{A} \times \mathcal{B}, \zeta^{*}(E \cap G)=\zeta(E)$ and $\eta^{*}(E \cap G)=\eta(E)$. See Halmos (1950, Theorem A, p.75). If $A \times B \in \mathcal{A} \times \mathcal{B}$, then $(A \times B) \cap G \subset\left(A \cap T^{-1} B\right) \times Y$. Consequently,

$$
\zeta(A \times B) \leq \zeta\left[\left(A \cap T^{-1} B\right) \times Y\right]=\lambda\left(A \cap T^{-1} B\right)=\mu_{T}(A \times B),
$$

and

$$
\eta(A \times B) \leq \eta\left[\left(A \cap T^{-1} B\right) \times Y\right]=\lambda\left(A \cap T^{-1} B\right)=\mu_{T}(A \times B) .
$$

Hence $\mu_{T}(A \times B)=\zeta(A \times B)=\eta(A \times B)$ for every A in \mathcal{A} and B in \mathcal{B}. Therefore, $\mu_{T}=\zeta=\eta$. This completes the proof.

Remarks. 1. Brown (1966, p.17-19) proved the above result when $X=Y$, $\lambda=\nu$, and the probability space $(X, \mathcal{A}, \lambda)$ is homogeneous and nonatomic.
2. There are cases that every extreme point of $M(\lambda, \nu)$ comes from some measure preserving transformation. As an example, let $X=Y=\{1,2,3\}, \lambda(\{1\})=$ $\lambda(\{2\})=\lambda(\{3\})=1 / 3$ and $\nu(\{1\})=\nu(\{2\})=\nu(\{3\})=1 / 3$. The set $M(\lambda, \nu)$ can be identified as the collection of all doubly stochastic matrices of order 3×3 with each row and column sum equal to $1 / 3$. By the well-known Birkhoff's theorem, the extreme points of $M(\lambda, \nu)$ can be identified with the six permutation matrices of order 3×3. Every one-to-one and onto transformation from X to Y is measure preserving. All these six transformations give all the extreme points of $M(\lambda, \nu)$.
3. There are cases that only some extreme points of $M(\lambda, \nu)$ come from measure preserving transformations. As an example, let $X=Y=\{1,2,3\}, \lambda(\{1\})=$ $1 / 6, \lambda(\{2\})=1 / 3, \lambda(\{3\})=1 / 2, \nu(\{1\})=1 / 6, \nu(\{2\})=1 / 3$, and $\nu(\{3\})=1 / 2$. The only measure preserving transformation in this case is the identity transformation. Surely, there are more extreme points of $M(\lambda, \nu)$.
4. There are cases in which no measure preserving transformation exists. As an example, let $X=Y=\{1,2,3\}, \lambda(\{1\})=\lambda(\{2\})=\lambda(\{3\})=1 / 3, \nu(\{1\})=$ $1 / 8, \nu(\{2\})=2 / 8$, and $\nu(\{3\})=5 / 8$.
5. Let $X=Y=[0,1], \mathcal{A}=\mathcal{B}=$ Lebesgue σ-field on X, and $\lambda=\nu=$ Lebesgue measure on \mathcal{A}. Then there are uncountably many measure preserving transformations on X preserving the Lebesgue measure. Further, if T_{1} and T_{2} are
two distinct invertible measure preserving transformations modulo a null set, i.e., $\lambda\left(x \in X ; T_{1} x=T_{2} x\right) \neq 1$, then $\mu_{T_{1}}$ and $\mu_{T_{2}}$ are distinct. For, if $\mu_{T_{1}}=\mu_{T_{2}}$, then $\mu_{T_{1}}(A \times B)=\mu_{T_{2}}(A \times B)=\lambda\left(A \cap T_{1}^{-1} B\right)=\lambda\left(A \cap T_{2}^{-1} B\right)$ for every A and B in \mathcal{B}. This implies that $\lambda\left(T_{1}^{-1} B \Delta T_{2}^{-1} B\right)=0$ for every B in \mathcal{B}. Consequently, as set transformations from \mathcal{B} (modulo λ-null sets) to \mathcal{B} (modulo null sets), T_{1}^{-1} and T_{2}^{-1} are identical. Hence $T_{1}=T_{2}$ a.e. [λ]. Not every extreme point of $M(\lambda, \lambda)$ comes from an invertible measure preserving transformation. An example can be given. This is in contrast to the case when $X=Y, X$ is a finite set, $\lambda=\nu, \lambda$ is the uniform probability measure on X in which every extreme point of $M(\lambda, \lambda)$ comes from a measure preserving transformation.

Acknowledgment. The authors are grateful to Professor Isaac Cornfeld for some useful discussions.

References

[1] J.R. Brown, Approximation Theorems for Markov Operators, Pacific J. Math., 16 (1966), 13-23.
[2] R.G. Douglas, On Extremal Measures and Subspace Density, Michigan Math. J., 11 (1964), 242-246.
[3] P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
[4] J. Lindenstrauss, A Remark on Extreme Doubly Stochastic Measures, Amer. Math. Monthly, 72 (1965), 379-382.
[5] B.V. Rao, On Discrete Borel Spaces and Projective Sets, Bull. Amer. Math. Soc., 75 (1969), 614-617.
[6] K.P.S. Bhaskara Rao and B.V. Rao, Borel Spaces, Dissertationes Mathematicae, 190 (1981), Panstwowe Wydawnictwo Naukowe, Warszawa.

Received June 4, 1990

