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 Measures With Prescribed Marginals,
 Extreme Points and Measure

 Preserving Transformations
 Let ( X , .4, A) and (V, B, v) be two probability spaces. Let M( A, v) be the

 collection of all probability measures fi on the product <r-field A x B of X x
 Y such that the first and second marginals of ļi are A and u , respectively, i.e.,
 fii(A) = fx(A x Y) = A(j4) for every A in A , and fiļ (B) = ¡i(X x B) = v(B )
 for every B in B. The set M( A, v) is convex. The extreme points of this set
 have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss
 (1965) when X = Y, A = B, A = u and the probability space has some additional
 structure. Let T be a measure preserving transformation from X to Y , i.e., T is a
 measurable transformation from X to Y , and A (T_1B) = v(B) for every B in B.
 We show that every such transformation gives an extreme point of M( A, i/). The
 basic idea is to build a probability measure /¿x in M( A, u) sitting on the graph
 G = {( x,Tx ); x G X} of T. But the graph G of T need not be available in the
 product <7-field Ax B. See Rao and Rao (1981, p.17) or Rao (1969). We overcome
 this difficulty by proceeding as follows and obtain a measure for which G is a
 thick set.

 Let P' be the projection map from X x Y to X. We claim that the graph
 G has the property: for every E in A x B, Pi(E fi G) 6 A. For, let S = {E G
 Ax B-, Pļ(EC'G) G A}. One can show that S is closed under complementation and
 countable unions, and contains all measurable rectangle sets. Hence S = A x B.
 Define a set function ļij on A x B by

 Pt(E) = '(Pi(E n G)) for E in Ax B.

 THEOREM, fi? is an extreme point of M( A, u).

 Proof. It is easy to check that is a probability measure on A x B. We
 now check that /ij has the prescribed marginals. Let A G A. Then H'{A) =
 Ht(A x Y) = '[Pi((A x Y) D G))] = A (A (1 T~XY) = A (A). Let B e B. Then
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 fi2(B) = !ít{X xB) = X[Pi((X xB) fl G)] = '(X n T~XB) = '{T~XB) = ĄB),
 since T is measure preserving. We now claim that G is a thick subset of X x Y
 under fix, i.e., the outermeasure of G, ßj(G) = 1. For, if E is any set in Ax. B
 containing G, then P'(E fi G) = X. Finally, we assert that fir is an extreme point
 of Af(A,f). Suppose ut = (l/2)(£ + *]) for some ( and r) in M( A,i/). It is obvious
 that C(G) = = 1. Further, for any E in A x B, ( "*(E D G) = C(^) an(ł
 f)*(E D G) = r](E). See Haimos (1950, Theorem A, p.75). If A x B G A x B, then
 (Ax5)nGc(Afi T~XB) x Y. Consequently,

 C(A xB)< C[(A D T~XB) x Y) = A (A n T~XB) = (iT{A x B),

 and

 rj(A xB)< r¡[{A n T"1#) xY] = X(A D T~XB) = fiT(A x B).

 Hence ht{A x B) = ((A x B) - rj{A x B) for every A in A and B in B. Therefore,
 fx j< = £ = r). This completes the proof.

 Remarks. 1. Brown (1966, p.17-19) proved the above result when X = Y,
 A = u, and the probability space (X, A, A) is homogeneous and nonatomic.

 2. There are cases that every extreme point of M( A, is) comes from some mea-
 sure preserving transformation. As an example, let X = Y = {1,2,3}, A({1}) =
 ^({2}) = ^({3}) = 1/3 and f({l}) = ^({2}) = f({3}) = 1/3. The set M( A, v) can
 be identified as the collection of all doubly stochastic matrices of order 3x3 with
 each row and column sum equal to 1/3. By the well-known Birkhoff's theorem,
 the extreme points of M( A, v) can be identified with the six permutation matrices
 of order 3x3. Every one-to-one and onto transformation from X to Y is measure
 preserving. All these six transformations give all the extreme points of M( A, i/).

 3. There are cases that only some extreme points of M( A, v) come from mea-
 sure preserving transformations. As an example, let X = Y = {1,2, 3}, A( { 1 } ) =
 1/6, A({2}) = 1/3, A({3}) = 1/2, f({l}) = 1/6, t/({2}) = 1/3, and */({3}) = 1/2.
 The only measure preserving transformation in this case is the identity transfor-
 mation. Surely, there are more extreme points of M (A, v).

 4. There are cases in which no measure preserving transformation exists. As
 an example, let X = Y = {1,2,3}, A({ 1 } ) = A({2}) = A({3}) = 1/3, ^({1}) =
 1/8, i/({2}) = 2/8, and i/({3}) = 5/8.

 5. Let X = Y = [0, 1], A = B = Lebesgue <r-field on X , and A = v =
 Lebesgue measure on A. Then there are uncountably many measure preserving
 transformations on X preserving the Lebesgue measure. Further, if T' and Tļ are

 488



 two distinct invertible measure preserving transformations modulo a null set, i.e.,
 X(x 6 X; T'x = Tļx) ^ 1, then uti and ht2 are distinct. For, if //31 = then

 X B) - x B) = A(y4 fl T{~1 B) = A(A fi T^lB) for every A and B in
 B. This implies that '(T{~1B A T¿1 B) = 0 for every B in B. Consequently, as set
 transformations from #( modulo A-null sets) to ^(modulo null sets), Tļ1 and T2_1
 are identical. Hence 7' = Tļ a.e. [A]. Not every extreme point of M( A, A) comes
 from an invertible measure preserving transformation. An example can be given.
 This is in contrast to the case when X = Y, X is a finite set, A = u, A is the
 uniform probability measure on X in which every extreme point of M( A, A) comes
 from a measure preserving transformation.
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