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Measures With Prescribed Marginals,

Extreme Points and Measure
Preserving Transformations

Let (X, A,)) and (Y,B,v) be two probability spaces. Let M(A,v) be the
collection of all probability measures g on the product o-field A x B of X x
Y such that the first and second marginals of u are A and v, respectively, i.e.,
p1(A) = (A xY) = A(A) for every A in A, and u2(B) = u(X x B) = v(B)
for every B in B. The set M()\,v) is convex. The extreme points of this set
have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss
(1965) when X =Y, A = B, A = v and the probability space has some additional
structure. Let T' be a measure preserving transformation from X to Y, i.e., T is a
measurable transformation from X to Y, and A(T-'B) = v(B) for every B in B.
We show that every such transformation gives an extreme point of M(A,v). The
basic idea is to build a probability measure pur in M(),v) sitting on the graph
G = {(z,Tz); = € X} of T. But the graph G of T need not be available in the
product o-field A x B. See Rao and Rao (1981, p.17) or Rao (1969). .-We overcome
this difficulty by proceeding as follows and obtain a measure pur for which G is a
thick set.

Let P, be the projection map from X x Y to X. We claim that the graph
G has the property: for every E in A x B, P,(ENG) € A. For, let £ = {E €
AxB; Pi(ENG) € A}. One can show that £ is closed under complementation and
countable unions, and contains all measurable rectangle sets. Hence £ = A x B.
Define a set function u7 on A x B by

pr(E) = AMPi(ENG)) for E in AXxB.

THEOREM. ur is an extreme point of M (), v).

Proof. It is easy to check that ur is a probability measure on A x B. We
now check that ur has the prescribed marginals. Let A € A. Then y;(A) =
pr(AXY) = APA(AXY)NG))] = M(ANT-Y) = M(A). Let B € B. Then
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p2(B) = pr(X x B) = A[PA((X x B)N@)] = MXNT"'B) = NT~'B) = v(B),
since T is measure preserving. We now claim that G is a thick subset of X x Y
under ur, i.e., the outermeasure of G, p}(G) = 1. For, if E is any set in A x B
containing G, then P,(ENG) = X. Finally, we assert that ur is an extreme point
of M(),v). Suppose ur = (1/2)(¢ + 1) for some ¢ and 7 in M (A, v). It is obvious
that ¢*(G) = n*(G) = 1. Further, for any F in A x B, (*(ENG) = ((E) and
7*(ENG) =n(E). See Halmos (1950, Theorem A, p.75). If A x B € A x B, then
(Ax B)NG C (ANT™'B) x Y. Consequently,

C(Ax B) < C[(ANT™'B) x Y] = A(ANT~'B) = ur(A x B),

and
n(Ax B)<q9[(ANT'B)xY]=MANT'B) = ur(A x B).

Hence ur(A x B) = ((Ax B) = n(A x B) for every A in A and B in B. Therefore,
ur = ¢ = 1. This completes the proof.

Remarks. 1. Brown (1966, p.17-19) proved the above result when X =Y,
A = v, and the probability space (X, A, A) is homogeneous and nonatomic.

2. There are cases that every extreme point of M (), v) comes from some mea-
sure preserving transformation. As an example, let X =Y = {1,2,3}, M({1}) =
A({2}) = M({3}) =1/3 and v({1}) = v({2}) = v({3}) = 1/3. The set M(\,v) can
be identified as the collection of all doubly stochastic matrices of order 3 x 3 with
each row and column sum equal to 1/3. By the well-known Birkhoff’s theorem,
the extreme points of M (), v) can be identified with the six permutation matrices
of order 3 x 3. Every one-to-one and onto transformation from X to Y is measure
preserving. All these six transformations give all the extreme points of M (A, v).

3. There are cases that only some extreme points of M(A,v) come from mea-
sure preserving transformations. As an example, let X =Y = {1,2,3}, A({1}) =
1/6, M({2}) =1/3, A({3}) =1/2, v({1}) = 1/6, v({2}) = 1/3, and »({3}) = 1/2.
The only measure preserving transformation in this case is the identity transfor-
mation. Surely, there are more extreme points of M (), v).

4. There are cases in which no measure preserving transformation exists. As
an example, let X =Y = {1,2,3}, AM{1}) = A({2}) = A({3}) = 1/3, v({1}) =
1/8, v({2}) = 2/8, and v({3}) = 5/8.

5. Let X =Y = [0,1], A = B = Lebesgue o-field on X, and A = v =
Lebesgue measure on A. Then there are uncountably many measure preserving
transformations on X preserving the Lebesgue measure. Further, if 77 and T, are
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two distinct invertible measure preserving transformations modulo a null set, i.e.,
Az € X; Tz = Tyx) # 1, then ur, and pr, are distinct. For, if u7y, = pr,, then
g1, (A X B) = pr,(Ax B) = M\(ANT{'B) = M\(ANT;'B) for every A and B in
B. This implies that A(T;'B A T; ! B) = 0 for every B in B. Consequently, as set
transformations from B(modulo A-null sets) to B(modulo null sets), 77! and T35
are identical. Hence Ty = T, a.e. [A\]. Not every extreme point of M (A, A) comes
from an invertible measure preserving transformation. An example can be given.
This is in contrast to the case when X = Y, X is a finite set, A = v, X is the
uniform probability measure on X in which every extreme point of M (A, \) comes
from a measure preserving transformation.
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