Inroads M. Bhaskara Rao, North Dakota State University, Fargo, ND 58105 K. Subramanyam, North Carolina State University, Wilmington, NC 28403

Measures With Prescribed Marginals, Extreme Points and Measure Preserving Transformations

Let $(X, \mathcal{A}, \lambda)$ and (Y, \mathcal{B}, ν) be two probability spaces. Let $M(\lambda, \nu)$ be the collection of all probability measures μ on the product σ -field $\mathcal{A} \times \mathcal{B}$ of $X \times Y$ such that the first and second marginals of μ are λ and ν , respectively, i.e., $\mu_1(A) = \mu(A \times Y) = \lambda(A)$ for every A in \mathcal{A} , and $\mu_2(B) = \mu(X \times B) = \nu(B)$ for every B in \mathcal{B} . The set $M(\lambda, \nu)$ is convex. The extreme points of this set have been characterized by Douglas (1964, Theorem 1, p.243) and Lindenstrauss (1965) when X = Y, $\mathcal{A} = \mathcal{B}$, $\lambda = \nu$ and the probability space has some additional structure. Let T be a measure preserving transformation from X to Y, i.e., T is a measurable transformation from X to Y, and $\lambda(T^{-1}B) = \nu(B)$ for every B in \mathcal{B} . We show that every such transformation gives an extreme point of $M(\lambda, \nu)$. The basic idea is to build a probability measure μ_T in $M(\lambda, \nu)$ sitting on the graph $G = \{(x, Tx); x \in X\}$ of T. But the graph G of T need not be available in the product σ -field $\mathcal{A} \times \mathcal{B}$. See Rao and Rao (1981, p.17) or Rao (1969). We overcome this difficulty by proceeding as follows and obtain a measure μ_T for which G is a thick set.

Let P_1 be the projection map from $X \times Y$ to X. We claim that the graph G has the property: for every E in $\mathcal{A} \times \mathcal{B}$, $P_1(E \cap G) \in \mathcal{A}$. For, let $\mathcal{E} = \{E \in \mathcal{A} \times \mathcal{B}; P_1(E \cap G) \in \mathcal{A}\}$. One can show that \mathcal{E} is closed under complementation and countable unions, and contains all measurable rectangle sets. Hence $\mathcal{E} = \mathcal{A} \times \mathcal{B}$. Define a set function μ_T on $\mathcal{A} \times \mathcal{B}$ by

$$\mu_T(E) = \lambda(P_1(E \cap G))$$
 for E in $\mathcal{A} \times \mathcal{B}$.

THEOREM. μ_T is an extreme point of $M(\lambda, \nu)$.

Proof. It is easy to check that μ_T is a probability measure on $\mathcal{A} \times \mathcal{B}$. We now check that μ_T has the prescribed marginals. Let $A \in \mathcal{A}$. Then $\mu_1(A) = \mu_T(A \times Y) = \lambda[P_1((A \times Y) \cap G))] = \lambda(A \cap T^{-1}Y) = \lambda(A)$. Let $B \in \mathcal{B}$. Then

 $\mu_2(B) = \mu_T(X \times B) = \lambda[P_1((X \times B) \cap G)] = \lambda(X \cap T^{-1}B) = \lambda(T^{-1}B) = \nu(B),$ since T is measure preserving. We now claim that G is a thick subset of $X \times Y$ under μ_T , i.e., the outermeasure of G, $\mu_T^*(G) = 1$. For, if E is any set in $\mathcal{A} \times \mathcal{B}$ containing G, then $P_1(E \cap G) = X$. Finally, we assert that μ_T is an extreme point of $M(\lambda, \nu)$. Suppose $\mu_T = (1/2)(\zeta + \eta)$ for some ζ and η in $M(\lambda, \nu)$. It is obvious that $\zeta^*(G) = \eta^*(G) = 1$. Further, for any E in $\mathcal{A} \times \mathcal{B}, \zeta^*(E \cap G) = \zeta(E)$ and $\eta^*(E \cap G) = \eta(E)$. See Halmos (1950, Theorem A, p.75). If $A \times B \in \mathcal{A} \times \mathcal{B}$, then $(A \times B) \cap G \subset (A \cap T^{-1}B) \times Y$. Consequently,

$$\zeta(A \times B) \le \zeta[(A \cap T^{-1}B) \times Y] = \lambda(A \cap T^{-1}B) = \mu_T(A \times B),$$

and

 $\eta(A \times B) \le \eta[(A \cap T^{-1}B) \times Y] = \lambda(A \cap T^{-1}B) = \mu_T(A \times B).$

Hence $\mu_T(A \times B) = \zeta(A \times B) = \eta(A \times B)$ for every A in A and B in B. Therefore, $\mu_T = \zeta = \eta$. This completes the proof.

<u>Remarks.</u> 1. Brown (1966, p.17-19) proved the above result when X = Y, $\lambda = \nu$, and the probability space $(X, \mathcal{A}, \lambda)$ is homogeneous and nonatomic.

2. There are cases that every extreme point of $M(\lambda, \nu)$ comes from some measure preserving transformation. As an example, let $X = Y = \{1, 2, 3\}, \lambda(\{1\}) = \lambda(\{2\}) = \lambda(\{3\}) = 1/3$ and $\nu(\{1\}) = \nu(\{2\}) = \nu(\{3\}) = 1/3$. The set $M(\lambda, \nu)$ can be identified as the collection of all doubly stochastic matrices of order 3×3 with each row and column sum equal to 1/3. By the well-known Birkhoff's theorem, the extreme points of $M(\lambda, \nu)$ can be identified with the six permutation matrices of order 3×3 . Every one-to-one and onto transformation from X to Y is measure preserving. All these six transformations give all the extreme points of $M(\lambda, \nu)$.

3. There are cases that only some extreme points of $M(\lambda, \nu)$ come from measure preserving transformations. As an example, let $X = Y = \{1, 2, 3\}, \lambda(\{1\}) = 1/6, \lambda(\{2\}) = 1/3, \lambda(\{3\}) = 1/2, \nu(\{1\}) = 1/6, \nu(\{2\}) = 1/3, \text{ and } \nu(\{3\}) = 1/2$. The only measure preserving transformation in this case is the identity transformation. Surely, there are more extreme points of $M(\lambda, \nu)$.

4. There are cases in which no measure preserving transformation exists. As an example, let $X = Y = \{1, 2, 3\}, \lambda(\{1\}) = \lambda(\{2\}) = \lambda(\{3\}) = 1/3, \nu(\{1\}) = 1/8, \nu(\{2\}) = 2/8, \text{ and } \nu(\{3\}) = 5/8.$

5. Let X = Y = [0,1], $\mathcal{A} = \mathcal{B}$ = Lebesgue σ -field on X, and $\lambda = \nu$ = Lebesgue measure on \mathcal{A} . Then there are uncountably many measure preserving transformations on X preserving the Lebesgue measure. Further, if T_1 and T_2 are

two distinct invertible measure preserving transformations modulo a null set, i.e., $\lambda(x \in X; T_1x = T_2x) \neq 1$, then μ_{T_1} and μ_{T_2} are distinct. For, if $\mu_{T_1} = \mu_{T_2}$, then $\mu_{T_1}(A \times B) = \mu_{T_2}(A \times B) = \lambda(A \cap T_1^{-1}B) = \lambda(A \cap T_2^{-1}B)$ for every A and B in \mathcal{B} . This implies that $\lambda(T_1^{-1}B \Delta T_2^{-1}B) = 0$ for every B in \mathcal{B} . Consequently, as set transformations from $\mathcal{B}(\text{modulo }\lambda\text{-null sets})$ to $\mathcal{B}(\text{modulo null sets}), T_1^{-1}$ and T_2^{-1} are identical. Hence $T_1 = T_2$ a.e. $[\lambda]$. Not every extreme point of $M(\lambda, \lambda)$ comes from an invertible measure preserving transformation. An example can be given. This is in contrast to the case when X = Y, X is a finite set, $\lambda = \nu$, λ is the uniform probability measure on X in which every extreme point of $M(\lambda, \lambda)$ comes from a measure preserving transformation.

Acknowledgment. The authors are grateful to Professor Isaac Cornfeld for some useful discussions.

References

- J.R. Brown, Approximation Theorems for Markov Operators, Pacific J. Math., 16 (1966), 13-23.
- R.G. Douglas, On Extremal Measures and Subspace Density, Michigan Math. J., 11 (1964), 242-246.
- [3] P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
- [4] J. Lindenstrauss, A Remark on Extreme Doubly Stochastic Measures, Amer. Math. Monthly, 72 (1965), 379-382.
- [5] B.V. Rao, On Discrete Borel Spaces and Projective Sets, Bull. Amer. Math. Soc., 75 (1969), 614-617.
- [6] K.P.S. Bhaskara Rao and B.V. Rao, Borel Spaces, Dissertationes Mathematicae, 190 (1981), Panstwowe Wydawnictwo Naukowe, Warszawa.

Received June 4, 1990