Real Analysis Exchange Vol.16 (1990–91)

Bernd Kirchheim, Institute of Applied Mathematics, Comenius University, Mlynská dolina, 842 15, Bratislava, Czechoslovakia.

Tomasz Natkaniec, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

ON UNIVERSALLY BAD DARBOUX FUNCTIONS

Abstract

It is well known that the sum (and the product) of a continuous function and a Darboux function need not be Darboux in general ([9]). More precisely, for every nowhere constant continuous $g: \mathbb{R} \to \mathbb{R}$ there exists some "bad" Darboux function $f: \mathbb{R} \to \mathbb{R}$ such that f + g or $f \cdot g$ do not have the Darboux property, see [2], [8]. It is the purpose of the present paper to construct a "universally bad" Darboux function f, see Corollary 2 below.

Ι

Let us establish some of the notation to be used later. We shall be concerned with real-valued functions defined on a subinterval I of \mathbf{R} ; here all intervals are assumed to be nondegenerate. Such a function f is said to be a Darboux function if f(J) is connected for any interval $J \subset I$. For a set $A \subset \mathbf{R}$ we denote by $\mathcal{D}^*(I, A)$ the set of all $f : I \to A$ such that cl $f^{-1}(y) = I$ for any $y \in A$ and we set $\mathcal{D}^* = \mathcal{D}^*(\mathbf{R}, \mathbf{R})$. A function f is said to be nowhere constant if no one of its level sets $f^{-1}(y)$ contains a relatively open subset of dom f. If G is a real-valued function defined on a subset of the plane, then we define for any $t \in \mathbf{R}$ the horizontal section of G by $G^t(x) = G(x, t)$ whenever $(x, t) \in \text{dom } G$, the definition of the vertical section G_t is analogous.

In the proof of Theorem 1 below we shall use the following

Assumption (\mathbf{A}) : the union of fewer than \mathfrak{c} (power of continuum) first-category

subsets of **R** is again of the first category.

The logical status of (A) perhaps requires some explanation. First of all, note that assumption (A) is independent of **ZFC**. Indeed, already in Cohen's classical model for (\mathbf{ZFC}) + non **CH**), see [5], there are subsets of the real line¹ which are not of the first category but whose cardinalities are less than c. A proof of this statement - formulated in a different but equivalent language - can be found in [4].

Next, (A) is a widely used consequence of Martin's axiom. (See the quite popular paper [10] for basic informations.) Since Martin's axiom is strictly weaker than the continuum hypothesis ([7]), we infer that CH implies (A) but not conversely. But even Martin's axiom is not implied by (A) since for instance ZFC + (A) + "R is the union of fewer than c Lebesgue zero-sets" is consistent. However, Martin's axiom is equivalent to the assumption that any nonvoid compact Hausdorff space not containing an uncountable collection of open sets cannot be written as the union of fewer than c first category sets. For both of these facts as well as for a rather extensive treatment of Martin's axiom we refer the reader to [6], in particular Theorems B1H, B1G, and 13A.

1. Theorem Let D be a dense, second category subset of **R**. Then there is a function $f \in \mathcal{D}^*(\mathbf{R}, D)$ such that the function

$$x \to G(f(x), g(x))$$

does not have the Darboux property on the nondegenerate interval $I \subset \mathbf{R}$ whenever

$$g: I \to \mathbf{R}$$
 is continuous and nowhere constant. (1)

$$G: \mathbf{R} \times g(I) \to \mathbf{R} \text{ is continuous},$$
 (2)

and

all, except countably many of the sections

$$G_t$$
 and G^t , $t \in \mathbf{R}$, are nowhere constant. $\}$
(3)

Proof Let \mathcal{M} be the family of all triples (G, g, I) fulfilling (1), (2), and (3) above. Then the cardinality of \mathcal{M} is less than or equal to \mathfrak{c} . Hence, we can write

$$\mathcal{M} = \{ (G_{\alpha}, g_{\alpha}, I_{\alpha}); \alpha < \mathfrak{c} \}.$$

¹take e.g. the set of all constructible real numbers

First, notice that for any function h defined on an interval, there are at most countably many y such that $h^{-1}(y)$ contains an interval. This together with (3) implies that for any $\alpha < \mathfrak{c}$ the set

$$C_{\alpha} = \{y; \operatorname{int}[(G_{\alpha})^{t}]^{-1}(y) \neq \phi \text{ or } \operatorname{int}[(G_{\alpha})_{t}]^{-1}(y) \neq \phi \text{ for some } t\}$$

is countable. In the sequel we will use the fact that for any $y \notin C_{\alpha}$ and for any $t \in \mathbf{R}$ both sets $\{x; G_{\alpha}(x,t) = y\}$ and $\{x; G_{\alpha}(t,x) = y\}$ are nowhere dense in \mathbf{R} .

Further, let $\{U_i; i < \omega\}$ be a sequence of intervals forming a base for the euclidean topology in **R** and **R** = $\{x_{\alpha}; \alpha < \mathfrak{c}\}$.

We will inductively define sequences of points

$$t_{\alpha,i} \in U_i, y_\alpha \in \mathbf{R}, p_\alpha \in g_\alpha(I_\alpha), \text{ and } z_\alpha \in D \text{ for } \alpha < \mathfrak{c} \text{ and } i < \omega$$
 (4)

such that

$$t_{\alpha,i} = t_{\beta,j} \text{ implies } \alpha = \beta \text{ and } i = j$$
 (5)

$$t_{\beta,i} \in I_{\alpha} \text{ implies } G_{\alpha}(x_{\beta}, g_{\alpha}(t_{\beta,i})) \neq y_{\alpha} \text{ for } \alpha, \beta < \mathfrak{c} \text{ and } i < \omega$$
 (6)

- $x_{\beta} \in I_{\alpha} \text{ implies } G_{\alpha}(z_{\beta}, g_{\alpha}(x_{\beta})) \neq y_{\alpha} \text{ for } \alpha, \beta < \mathfrak{c}$ (7)
- $y_{\alpha} \notin C_{\alpha} \text{ for } \alpha < \mathfrak{c}, \text{ and}$ (8)

$$y_{\alpha} \in (\inf G_{\alpha}(\mathbb{R} \times \{p_{\alpha}\}), \sup G_{\alpha}(\mathbb{R} \times \{p_{\alpha}\})) \text{ for } \alpha < \mathfrak{c}.$$
 (9)

For this purpose, let us assume that for some $\alpha < \mathfrak{c}$ all $t_{\beta,i}, y_{\beta}, z_{\beta}$ and p_{β} with $\beta < \alpha$ and $i < \omega$ are already defined. According to (8) and (1), for any $\beta < \alpha$ both sets $\{x; G_{\beta}(x, g_{\beta}(x_{\alpha})) = y_{\beta}\}$ and $\{x \in I_{\alpha}; G_{\beta}(x_{\alpha}, g_{\beta}(x)) = y_{\beta}\}$ are nowhere dense. Hence, assumption (A) implies the existence of

$$z_{\alpha} \in D \setminus \bigcup_{\beta < \alpha} \{ x; G_{\beta}(x, g_{\beta}(x_{\alpha})) = y_{\beta} \}$$
(10)

as well as of

$$t_{\alpha,i} \in U_i \setminus (\bigcup_{\beta < \alpha} \{ x \in I_\beta; G_\beta(x_\alpha, g_\beta(x)) = y_\beta \} \\ \cup \{ t_{\beta,j}; \beta < \alpha \text{ or } (\beta = \alpha \text{ and } j < i) \})$$
(11)

for i = 1, 2, ... Next, we select any $p_{\alpha} \in g_{\alpha}(I_{\alpha})$ such that $(G_{\alpha})^{p_{\alpha}}$ is nonconstant. Since the set K_{α} which is defined to be

$$\bigcup_{\beta \leq \alpha} (\bigcup_{i < \omega} \{ G_{\alpha}(x_{\beta}, g_{\alpha}(t_{\beta,i})); t_{\beta,i} \in I_{\alpha} \} \cup \{ G_{\alpha}(z_{\beta}, g_{\alpha}(x_{\beta})); x_{\beta} \in I_{\alpha} \} \cup C_{\beta})$$
(12)

is of cardinality less than c, we can choose some

$$y_{\alpha} \in (\inf G_{\alpha}(\mathbf{R} \times \{p_{\alpha}\}), \sup G_{\alpha}(\mathbf{R} \times \{p_{\alpha}\})) \setminus K_{\alpha}.$$
 (13)

Evidently, the $t_{\alpha,i}$'s, y_{α} 's, z_{α} 's and p_{α} 's chosen in this way satisfy (4), (5), (8), and (9). To verify (6) fix any $i < \omega$, $\alpha, \beta < \mathfrak{c}$ and let $t_{\beta,i} \in I_{\alpha}$. If $\beta \leq \alpha$, then (12) and (13) together ensure that $G_{\alpha}(x_{\beta}, g_{\alpha}(t_{\beta,i})) \neq y_{\alpha}$. Else we have $\beta > \alpha$ and in this case (11) implies (6). Similarly (7) can be shown.

Now we define the desired function f by

$$f(x) = \begin{cases} x_{\alpha} & \text{if } x = t_{\alpha,i} \text{ and } x_{\alpha} \in D \text{ for some } i < \omega \text{ and } \alpha < \mathfrak{c} \\ z_{\alpha} & \text{if } x_{\alpha} = x \notin \{t_{\beta,i}; x_{\beta} \in D, i < \omega \text{ and } \beta < \mathfrak{c} \} \end{cases}$$

Since for each $x \in D$ there is some $x_{\alpha} = x$ and since $f(t_{\alpha,i}) = x$ for any $i < \omega$, we conclude from $t_{\alpha,i} \in U_i$ that $f \in \mathcal{D}^*(\mathbf{R}, D)$.

We finish the proof by showing that for any fixed $\alpha < \mathfrak{c}$ the function $h(x) = G_{\alpha}(f(x), g_{\alpha}(x)), x \in I_{\alpha}$ fulfills

$$y_{lpha}
ot\in h(I_{lpha}) ext{ but inf } h(I_{lpha}) < y_{lpha} < ext{ sup } h(I_{lpha}).$$

Indeed, the first statement holds since in case $x = t_{\beta,i} \in I_{\alpha}$ with $x_{\beta} \in D$ (6) implies $h(x) = G_{\alpha}(x_{\beta}, g_{\alpha}(t_{\beta,i})) \neq y_{\alpha}$ and since for other $x = x_{\beta} \in I_{\alpha}$ $h(x) = G_{\alpha}(z_{\beta}, g_{\alpha}(x_{\beta})) \neq y_{\alpha}$ by (7). As concerns the second statement, we first conclude from (9), cl $D = \mathbb{R}$, and (2) that there are $v, w \in D$ satisfying

$$G_{\alpha}(v,p_{\alpha}) < y_{\alpha} < G_{\alpha}(w,p_{\alpha}).$$

Since $f \in \mathcal{D}^*(\mathbf{R}, D)$ and $p_{\alpha} = g_{\alpha}(s)$ for some $s \in I_{\alpha}$, there exist sequences $\{a_i\}_{i=1}^{\infty}, \{b_i\}_{i=1}^{\infty}$ of points from I_{α} such that $\lim_{i\to\infty} a_i = \lim_{i\to\infty} b_i = s$, $f(a_i) = v$, and $f(b_i) = w$ for $i \geq 1$. Then (1) and (2) yields $\lim_{i\to\infty} h(a_i) = \lim_{i\to\infty} G_{\alpha}(v, g_{\alpha}(a_i)) = G_{\alpha}(v, p_{\alpha}) < y_{\alpha}$ and similarly $\lim_{i\to\infty} h(b_i) > y_{\alpha}$ which of course implies the second statement and finishes the proof.

We want to point out the most interesting case of our quite general theorem.

2. Corollary There is an $f \in \mathcal{D}^*$ such that for each continuous and nowhere constant function g defined on some interval the functions $f + g, f - g, f \cdot g$ and f/g (if $0 \notin \operatorname{rng}(g)$) do not have the Darboux property.

3. Remark It seems not to be very easy to get rid of the condition that g is nowhere constant. Indeed, if $f \in \mathcal{D}^*$ and g is a continuous Cantor-type function, i.e. the set of points of local constantcy of g is dense in dom g, then obviously $f + g \in \mathcal{D}^*$ has the Darboux property. This motivates us to formulate

Problem 1. Does there exist a Darboux function $f : \mathbb{R} \to \mathbb{R}$ such that $f + g(f \cdot g)$ does not have the Darboux property whenever the continuous function g is nonconstant?

Problem 2. Is there a Darboux function $f : \mathbb{R} \to \mathbb{R}$ such that the points of continuity form a dense set and that the function $x \to G(f(x), g(x))$ is not Darboux on the interval $I \subset \mathbb{R}$ whenever (1), (2), and (3) from Theorem 1 are fulfilled². (It is not very difficult to see that no such function can serve as a solution of Problem 1).

Π

Let $I \subset \mathbb{R}$ be a interval. In [3] it was stated (in a more general form) that for any Darboux $f: I \to \mathbb{R}$ and any continuous $g: I \to \mathbb{R}$ the sum f+g belongs to the class $\mathcal{U}(I)$ of all $h: I \to \mathbb{R}$ such that cl $f(J \setminus A) = [\inf f(J), \sup f(J)]$ whenever J is a subinterval of I and the cardinality of A is less than \mathfrak{c} . On the other hand, our theorem shows that under the assumption (A) there is always a function in $\mathcal{U}(I)$ which cannot be written as the sum of a Darboux and a continuous function. Indeed, notice that for $D = \mathbb{R} \setminus \mathbb{Q}$, the irrationals, $\mathcal{D}^*(I, D) \subset \mathcal{U}(I)$ holds. Let $F \in \mathcal{D}^*(I, D)$ be the restriction (to I) of the function f from Theorem 1 and let F = d + g, where $g: I \to \mathbb{R}$ is continuous. If g is constant on some interval $J \subset I$, then d = F - g is not Darboux on J and if g is nowhere constant then according to Theorem 1 d = F + (-g) again does not have the Darboux property. Therefore, we are led to

Problem 3. Characterize the class of all functions which are the sum of a Darboux and a continuous function.

However, this question appeared already a long ago - see the survey paper [1].

References

- [1] A. Bruckner and J. Ceder, *Darboux continuity*, Jahresbericht der Deutschen Mathem.-Verein. 67 (1965), 93-117.
- [2] A. Bruckner and J. Ceder, On the sums of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.

²The problem remains interesting if we consider only the case G(x, y) = x + y.

- [3] A. Bruckner, J. Ceder and M. Weiss, Uniform limits of Darboux functions, Colloquium Math. 15 (1966), 65-77.
- [4] L. Buckovský, The consistency of some theorems concerning Lebesgue measure, Comment. Math. Univ. Carolinae, 6 (1965), 179–180.
- [5] P.J. Cohen, Set theory and the continuum hypothesis, Benjamin, New York, 1966.
- [6] D.H. Fremlin, Consequences of Martin's axiom, Cambridge University Press, Cambridge, 1984.
- [7] D.A. Martin and R.M. Solovay, Internal Cohen extensions, Ann. Math. Logic, 2 (1970), 143–178.
- [8] T. Natkaniec and W. Orwat, Variations on products and quotients of Darboux functions, Real Analysis Exchange, 15(1) (1989-90), 193-202.
- [9] Radakovič, Über Darbouxsche und stetige Funktionen, Monatshefte Math. Phys. 38 (1931), 117-122.
- [10] J. Schoenfield, Martin's axiom, Amer. Math. Monthly, 82(6) (1975), 610-617.

Received January 1, 1991