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 STOCHASTIC AND OTHER FUNCTIONAL
 INTEGRALS

 Given a fixed real number a, the space T of all real valued functions / on [a, oo)
 with /(a) = 0, and a fixed F £ T, we consider integrals

 (i) r F(t)df(t) (f e T).
 Ja

 When F € L2(a,oo), T.W. Lee [8] defined (1) as an integral equivalent to that of
 Paley, Wiener and Zygmund [9], that exists for all / € T except a set of Wiener
 measure zero, so restricting / to be continuous. An integral like that of Itô [6]
 would need F(t,f) for F(t)' this will be discussed elsewhere. The present paper
 fills a gap in [8], uses a more general measure than Wiener's, and gives properties
 of the integral.

 The construction uses gauge integrals, the latest book discussing them being
 [4], with a brief history on p. 196. Briefly, let -00 < u < v < +00, let 6(t) > 0
 for all finite t € [u,v] (<$ is called a gauge), and let real numbers A,B be given,
 respectively when u = -00, v = +00. Then the interval-point pair ([r, s),t) is
 (A, B, ¿)-fine if either t = r or s with s - r < 6(t), or s < A when r = -00 = u,
 or r > B when s = +00 = v. A finite collection of interval-point pairs ([r, s), t) is
 {A, B, ¿)-fine if each pair is ( A , B, ¿>)-fine, and the collection is a division T> of [u, v)
 if the intervals are disjoint with union If w > -00 we omit A, if v < +00
 we omit B , and if u, v are both finite we write "¿-fine". The generalized intervals
 I Ç T of real valued functions are Cartesian products <3> I(t) of one-dimensional
 finite or infinite intervals I(t) for all t > a, where for some finite subset C C (a, 00),

 Ç (-00, 00) ( t € C), I(t) = (-00,00) (t £ C, t> a).

 Note that t = a is omitted since /(a) = 0 and we would need 1(a) to be just a.
 For a given I let C(I) be the smallest C, so that for t G C(I), I(t) ^ (-00,00).
 Let Xb be the variable, [tit, Vķ) an interval, Sb(fc-,Xb) > 0 a gauge, with suitable
 Ab,Bb, and let ([ií¡,, vt), ar^) be (i4j, Bb, ¿¡,)-fine, all for t = b 6 C. Here, fc is
 the finite set of values f(b) for 6 6 C. As C is a finite set we can replace 6b by
 6c(fc',Xb) = min 6b(fc;xb) > 0, with Ac = min Ab,Bc = min Bb. For each

 bÇO bÇC bçO
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 f E T let Ci(f) C (a,oo) be a finite set. Then we restrict C to be a finite
 set satisfying Ci(f) Ç C C (a, oo). Given the Ci(f),C, 8c, Ac , Bc , there are
 divisions T> of I, so that we can define the generalized Riemann integral H(I ) of
 an interval-point function h(J, f) to be a value such that for each e > 0 and some
 Ca(/), C, Sc, Ac, Bc , and all (Ac , Bc, ¿c)-fine divisions T> of I,

 '(V)Xh(J,f)-H(I)'<e.

 We then have the usual Fubini-type theorems, see [2], [3], [5]. The most general
 form of interval-point function for which Fubini's theorem holds when the integral
 over T exists, for all partitions of (a, oo) into a finite set and its complement, is
 one variationally equivalent to

 (2) k(i,f) = s(c(,iyj ) n *V(»)./W)
 fc€C(/)

 for some g, kb. See [3]. Sometimes, for

 (3) C = (&!, . . . , bn), a = bo < bi <...< bn,

 g(C,f) s QU) n «(/ft) - m-, y, bi - 4,.,),
 i=i

 (4) t'([,,t),/(t)) = .-«,W) = l.
 Wiener measure results from (2), (3), (4) with

 q(x ; c) = ( 2ttKc)~ * exp(- x2/(2 Kc)) (c > 0)

 and K = |, while one of the Feynman measures has K = See [3], p. 218; [5],
 Chapter 8.

 For each 6 > a let 1(b) = [ii&, Vb), let I = (^) 1(b), C(I) Ç C C (a, oo), C finite,
 6>a

 with Hc(I) the integral of h over the Cartesian product of 1(b) for b E C. Then the
 Smoluchowski-Chapman-Kolmogorov relation for h is that He (I) is independent
 of C 3 C(I). Thus we omit C and write H(I). If b > a, b £ C(I),

 /OO -oo  S(C; f)dk'm, m) = S(C(/); f) (C = C(l) U sing (b)),
 -oo

 for ///-almost everywhere in T. In (3), (4), for almost all f(bn), /(6j+i), /(6>),

 r «WW - /(Mii - K)if(b) = 1 (b > K),
 J - OO

 r - M): b - - m-, - b)df(b)
 J -oo

 = i(/(K+.) - M); irti - bj)(b¡ < b < bi+1).
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 For X = f(b) - f(bk), c = b - bk(k = n or j), c' = bj+ j - 6, and almost all
 V = f(bj+ 1) - f(bj),

 (6) f q(x] c)dx = 1 (c > 0),
 J - oo

 /oo -OO  ç(x; c)ç(y - x; c')dx = ç(y; c + c') (c > 0, c' > 0).
 -OO

 The second is a convolution.

 Next we have an extension of the gauge integral theory of [4].

 Lemma 1. If the gauge integral M of an m(/, x) exists in [a, w) for all finite
 w > a, then, given e > 0, a gauge 6 > 0 exists such that for all 6-fine divisions T>
 of [a, oo),

 (2>)E'|M(/)-m(/,ť)| < e,
 where in E' we omit the term for ([u,oo),oo) G T>.

 Proof. See [4], p. 53, Theorem 5.3, for [a + j - l,a + j), and e.2~J for
 e(j = 1,2,.. .). This does not need B nor the integral over [a, oo).

 T.W. Lee [8] used P.Y. Lee [7], Lemma 4, p. 315, as follows.
 If F G L2(a, oo) and e > 0, there is a step function G(x-,e) with

 ||F - G''2 s in«) - G(x;e)'2dx < e.

 This is not strong enough for T.W. Lee's purpose, we need G(x ; e) to depend on
 divisions as well as e. We define, for T> a division of [a; oo), Fp(x) = F(t) (u <
 x < v < oo, ([u, i>), t ) 6 T>); otherwise Fv(x) = 0.

 Lemma 2. For F £ L2(a, oo), hence F measurable, given e > 0, a gauge
 6 > 0 on [a, oo) and a constant B > a exist so that for all ( B , £)-fine divisions V
 of [a, oo),

 ''F-Fv''2<e.

 Proof. For real-valued F and finite w > a, by the Cauchy-Buniakowski-
 Schwarz inequality and the measurability of F, |F| G Ll(a,w), and so F E
 £a(a, w). Writing

 G(u , v) = I F dx (a < u < v < oo),
 Ju

 given e > 0, by Lemma 1 ¿j(x) > 0 exist on [a, oo) such that for all ¿j-fine divisions
 T> of [a, oo),

 (7) (2>)E'| F(t)(v - u) - G(u, v)l < c.4~' 0 = 1,2,.. .).
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 For some gauge So > 0 on [a, oo) and B > a, and all ( B , ¿o) -fine divisions T> of
 [a,oo),

 roo

 (8) '(V)Z'F2(t)(v -u)- F2dx I < e.
 Ja

 For Xj the set of x with |F(*)| < 2 (j = 1), 2 '-1 < |F(x)| < 2> ( j = 2,3, . . .), let
 6(x) = min(¿j(x), ¿o(®)) > 0(x E Xj,j = 1,2,3,...) with T> a (B, 5)-fine division
 of [a, oo). For w the largest finite v in D, with (8), (7),

 rw roo ř w

 (9) J / rw Fldx = (2>)E 'F2(t)(v - u), I J / F2dx - / F%dx' < e, J ( i J CL CL

 rw rv

 / rw FV(F - Fv)dx = (P)E' / F(t)(F - F(t))dx Ja Ju

 = (V)X'F(t){G(u, v) - F(t)(v - «)},

 /w  FV{F - Fv)dx' < ¿2 2Je4"> = e.
 i=i

 For real valued F the result follows from (8), (9), (10) and

 Jroo I a (F - Fvfdx = Ja / roo F2dx - Ja / rw Fldx - 2 Ja / rw Jroo I (F - Fvfdx = / F2dx - / Fldx - 2 / FV{F - Fv)dx , a Ja Ja Ja

 roo

 o < / (F - Fvfdx < 3e. Ja

 For complex valued F the real and imaginary parts lie in L2(a, oo) and

 (11) ''F - Fv''2 < 6e.

 Lemma 3. For a finite subset C C (a, oo) let T(C) be the Cartesian product
 of 1(b) = (- oo,oo)(6 G C). Let F : T - ► R be a functional F' that is constant
 relative to f(b) forb £ C, with H the integral of h , and the Smoluchowski-Chapman-
 Kolmogorov relation. If F(f)H(I) is integrable overT, so is F'(f)H(I) overT(C)
 and

 i Fdh= I fidH.
 Jt Jt(c)

 This is Wiener's formula when using Lebesgue integrals and Wiener measure.

 Proof. Use [3], pp. 223-4, Theorem 5(15).
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 To extend T.W. Lee [8], p. 66, Proposition , we use (4) and generalize g in (3)
 to

 (12) r(/(6,) - /((*,), 6, - fc>, /(6j) - M),
 h-i, /(M - /(¿»-i ) A - &»-i) S 0.

 For simplicity we write r,-(x; c) for (12) with f(bj) - f(bj-i) = x, bj - bj- 1 = c > 0,
 keeping /(6fc) - /(&*_! ) and 6* - 6fc_x fixed (k ^ j), where for some K > 0,

 /oo -OO xrj(x'c)dx = 0, J / - roo oo xrj(x'c)dx = 0, / x2rj(x;c)dx < Kc.
 -OO J - oo

 THEOREM 1. Leť H > 0 be the integral in T(C ) of the h of (2), (4), (5),
 (12), (13). Writing A / = f(v) - f(u), for F € L2(a, oo) and two divisions T> , £ of
 [a, oo),

 (14) ||(P)E'FA/ - (S)E'FAfW = y/ J '(V)Yï'FAf - (£)£'FA/|2dtf

 (15) ||(2>)ETA/|| <

 A functional k(F ; /) ¿5 uniquely defined H -almost everywhere in T with the fol-
 lowing property. Given e > 0, there are a gauge 8 > 0 on [a, oo) and a number
 B > a with

 (16)

 for all ( B,S)-fine divisions T> of [a, oo).

 Corollary 1. If, for the f in a set of non-zero H-variation, (1) exists as a
 generalized Riemann integral, its value is k(F ; /) H -almost everywhere in the set.

 Corollary 2. If equality in (15), k(F] f) = 0 H-almost everywhere if and only
 if F = 0 almost everywhere in [a,oo).

 Corollary 3. k(F;f) is algebraically linear in F.

 Proof of Theorem 1 and Corollaries. As Fv and Fg are step functions, so
 is their difference, equal to Lj , say, in bj)(l < j < n) and to 0 in [6n, oo). For
 real valued F ,
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 1 2

 (17) O < {(D)E'f A/ - (Í)E'FA/}2 = ¿ !,{/((.,) - /(6j-,)}
 J = 1

 j- 1

 jyk=l,j<k

 For C = (6i,...,6n) this is a continuous function L over T(C), constant over
 T((a,oo) ' C). Let il be a generalized interval of T with C(R ) = C and R(bj)
 compact in one dimension (j = 1, . . . , n). For the Cartesian product I of 1(b) with
 I Ç iž, C(I) Q C, let mesh (I) be the greatest lengths of the 1(b), omitting 1(b)
 with b C(I). Then, given e > 0, there is a constant 6 > 0 such that if I Ç R
 and mesh (I) < 6 , the oscillation of L in I is less then e. For V a division of R let
 mesh (I) < S for every generalized interval I with (I, f) G V for some /. As H > 0
 the Darboux upper and lower sums for L and V differ by at most (V)E E H ,
 and H is VB* since H > 0, while by refinement of subdivisions the Darboux
 lower sums tend to a finite limit. Hence the Riemann and so generalized Riemann
 integrals of L(f)H(I) exist over R. Expanding the one-dimensional intervals R(bj)
 to (- oo, oo), the monotone convergence theorem shows that L(f)H(I) is integrable
 over T. By Lemma 3 and (13), (17),

 -i 2

 ||(C)E'FA/-(£)S'FA/||!= I ¿MAM -/(»,•-,)} dH
 lT L-

 j,k=l,j<k

 As H is the integral of h in T(C) we can replace H by h and use Fubini's theorem,
 integrating with respect to 6n, 6„_i ,bi in turn, 6* before bj when j < k. So we
 put X = f(bk) - f(bk-i), obtaining in the second sum

 /oo -oo (f(bk)-f(bk-i))r(...,f(bk)-f(bk_1),...)df(bk) = J / roo - oo (f(bk)-f(bk-i))r(...,f(bk)-f(bk_1),...)df(bk) = / roo xr^x-M-bk.^dx = 0. -oo J - oo

 Thus the integral over T of the terms with j / k is 0, leaving the integral of the
 squares. The integral involving bj uses f(bj) as integrator and we have
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 n roo JL „

 £ •'-°0 / roo L)x2r¡(x-, b¡ - h¡ -, )<fe < ^ 1^(6, „ - tj-! ) j=i •'-°0 )=i
 roo

 = K {Fv-Fe)2dx = K''Fv-Fe''Ļ
 Ja

 For complex valued F take real and imaginary parts separately, adding at the end
 for (14), and similarly for (15). For (16) let D, S be (/?, £)-fine. By Lemma 2, (11),
 the integral in (14) is

 <K{''Fv-F''2 + ''F- Fe ||2}2 < 24 Ke.

 As H > 0, Z/2-theory gives a suitable sequence of T> for which

 (Z>)£'FA/

 tends to a limit, say k(F]f), H- almost everywhere. Then Fatou's lemma gives
 (16) with uniqueness //-almost everywhere.

 For Corollary 1 let p(F ; /) be the generalized Riemann integral for those / for
 which it exists, and otherwise let p(F; f ) = k(F; /). By Fatou's lemma p satisfies
 (16), so p-k //-almost everywhere. By (16) for Corollary 2, k(F; /) = 0 //-almost
 everywhere if and only if

 (T>)L'F Af - ► 0, HFplh^O

 with 8 , B-1, one way requiring equality in (15) or, more generally, if for some K'
 in 0 < K' < K,

 ||(Z>)E'FA/|| > VK, llallí.

 Then ||/x)||2 -* 0 with 6, B'1, if and only if F = 0 //-almost everywhere.
 Corollary 3 is clear.
 When H is Wiener measure, T.W. Lee [8] calls k(F ; /) the stochastic integral

 of F relative to f for the generalized Riemann integral using Wiener measure,
 in short, the GWS-integral, and shows that it coincides with the Paley-Wiener-
 Zygmund [9] integral. Here we use //-measure, so that k(F; f) can be called the
 GHS-integral. Note that if c > 0 and q(x;c ) = q(x/y/c) > 0, then (6), (13) imply
 that H is Gaussian, a normal distribution. See Cramer [1], p. 51, Theorem 18.
 Also by Theorem 1,

 (18) for F € L2(a,oo) and measurable X Ç [a, oo), Fx(X;-) G ¿2(a,oo)
 and the GHS-integral exists,
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 say as k(F ; /; X). We give some properties.

 THEOREM 2. For a sequence (Xn) of disjoint bounded measurable sets in
 [a, oo) with union X, then with convergent sum H -almost everywhere,

 OO

 (19) k(F;f-,X)='£k(F-,f-,X,).
 n=l

 In particular, k(F; /; I) is countably additive over disjoint bounded intervals I Ç
 [a, oo), and so finitely additive over the (/, t) of a division of a finite interval of
 [a,oo). For sequences ( tn ) of t, k(F] /; [a, tn)) tends to k(F;f) as tn - ► oo, to
 k(F',f ; [a, u)) as tn - ► u - (u > a) and tn - » u + (u > a), and to 0 as tn - ► a+.
 Further, if F Afx(Xn] •) is generalized Riemann integrable for n = 1,2,..., then
 so is F Ax(X' •). All these results are for H -almost all f .

 Proof. In (16) let Fx(Xn; •), e.2-n, 6n and Fx(X] •), e, So replace F , e, S , respec-
 tively, with B > a if X is unbounded. Let £+(x) = min(¿>o(a;), ® G Xn , n =
 1,2,...), ¿+(ar) = 1 (x ^ X), and let P be a ( B , ¿+)-fine division of [a, oo). As V
 has only a finite number of (/, t ), an integer N depending on T> exists with n < N
 for every (/, t) G V with t € Xn. Thus by (16),

 ''(V)VfAfx(X-,-) - k(F-J-,X)'' < e,

 ||(®)E7A/x(X„; •) - *(F; /; Xn)|| < e.2"«,

 ''(V)E'fAfx(X; •) - £ *(F; /; Jf.)ll
 n=l

 = II E{(Z>)£'FA/X(*„;-) - *»»11
 n=l

 < £ ||(©)E'FA/*(jr.¡-) - k(F-,f;X.) || < ¿ e. 2" < e,
 n= 1 n=l

 |II>(F;/;*n)-i(F;/;J0||<2e.
 n=l

 Here iV depends on e > 0, and goes to infinity as £ - + 0+, so that by Fatou's lemma
 the series in (19) converges //-almost everywhere and (19) follows. In particular,
 for //-almost all /, k is countably additive in I (take Xn = /„). For t0 = a <
 th (tn) strictly increasing to infinity, and /„ = [ť„_i, tn) we have k(Fš, /; [a, tn )) -*
 k(F' /), and similarly for the next three results. To prove the generalized Riemann
 integrability of F A fx(X~, •) from that of F Afx(Xn; •) for each n, we take suitable
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 ¿n(/; x) > O on the disjoint Xn and use (19) and N, so that

 '(V)KFAfx(X;-)-HFJ;X)' <Y,'(T>)VFAfx(X„-,-)-k(F;f;X„)'.
 n= 1

 Note what we have not proved in the last theorem; for example, see the differ-
 ence between tn - > u+ and t - ► u+. To each such (tn) corresponds a set F((in))
 of H- variation zero. Given a countable number of such (ťn), the union of the cor-
 responding F((ťn)) is still of H variation zero. But to the uncountable number of
 t tending to a limit, there corresponds a set Y of f where the limit of k(F' /; [a, t))
 does not exist, and we cannot prove that Y is of .//-variation zero.

 Further, given F, let Z be the set of (/, «) for which k(F;f' [a,ťn)) does not
 tend to k(F'f' [a,«)) (or 0 when u = a), for some sequence ( tn ) tending to u+.
 Then for each fixed u> a, the set of / with (/, u) € Z, has H- variation zero. For
 Lebesgue measure i on [a, oo), if Z is H x ^-measurable, then by Fubini's theorem
 there is a set W Ç T of //-variation zero such that if f € T ' W then (/, u ) G 'Z
 for almost all u , and k(F ; /; [a, ¿n)) - > k(F; /; [a, «)) for all ( tn ) tending to it+ and
 u almost everywhere in (a, oo). Similarly for u- . These results may be as near as
 we can get to continuity of k(F ; /; [a, t )) in t.

 THEOREM 3. In Theorem 1 let (16) be true for all ( B,6)-fine divisions T>
 of [a, oo), with V a partial division of such a T>. Then the Saks-Henstock Lemma
 here is that

 (20) ''(V)S(FAf-k(F-J-,m<e.

 roo

 Corollary. k{F'f'X ) = / x(X'i')dk(F]f;I) H-almost everywhere (X mea-
 Ja

 surable).

 Proof of Theorem 3 and Corollary. For V ^ T> we put 1Z = V U 5, a
 division of [a, oo), where £ is any (B, ¿)-fine division of the union E oí I for all
 (/, t) € T>'V. Then, //-almost everywhere,

 (5)E'FA/-*(F;/;£)

 for a suitable sequence of £, and Fatou's lemma gives

 ||(P)E'FA/ + k(F; /; E) - k(F-, /)|| < e.

 Finite additivity of k for disjoint intervals gives (20). Multiplying FAf - k by
 x(^; •) is the same as taking partial divisions, and (20), (18) give the Corollary.
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 [4], p. 197, lines 5-9, give a short history of the Saks-Henstock lemma, which
 is [4], p. 52, (5.5). The Weierstrass inequality in Burkill integration becomes in
 generalized Riemann integration the inequality that defines variational integration,
 see [4], p. 53, Theorem 5.3 (5.6), and remarks on p. 54. The analogue here may
 be false. For when F is real and / € T varies, the (/, t) for which FAf - k > 0,
 can alter with /, and we fail to prove that

 ||(D)E'|FA/-fc| II < 2e.

 However, (20) gives the variation set definition of variational integration.
 fc(F; /; [a, t)) is mean continuous in t - ► u-, u > a, in the following sense.

 (21) K(t) = ||fc(F;/;[ť,u))|| -»0(<^u-,u> a).

 For if not, then for some e > 0 and a strictly increasing sequence ( tn ) - ► u- ,
 K{tn) > £, contrary to (19) when Xn = [ťn-i^n)-

 Using (21), and (20) with a single (B, ¿)-fine ([u,tt),u),

 ||.F(u)){/(ti) - /(v)} - k(F ; /; [v, u))|| < e,

 (22) |F(u)| ||/(ti) - /(v)|| -»• 0 (t> -»• u-,u > a).

 We can take F(u) ^ 0, and also "u = +oo". For finite u > a, similarly

 (23) ||/(v) - /(ti)|| -»• 0 (ü -»• M+).

 Now Fi = x([a,u);*) € L2{a, oo)(a < u < oo). By Theorem 1, (22), (23), and
 choosing 8 > 0 so that some ([u,u),u) is in each division of [a,oo),

 ||/(») - ¡(a) - l(F,;/)|| - 0 (e u-), ||/(u) - f(a) - t(ii;/)|| = 0,

 and by uniqueness k(Fi'f) = f(u) - f(a) for //-almost all /. By linearity in F
 and Theorem 2,

 *(x([«> »);•);/) =

 (24) Mx((«>w);-);/) = f(v)~ f(u+)(a<u<v),

 for //-almost all /. Theorem 2 then enables us to tackle open sets with a convergent
 infinite series, and so closed sets, for //-almost all /.

 If / G L2(a, oo) is also of bounded variation, then for continuous /, (1) can
 be a Riemann-Stieltjes integral and so a generalized Riemann integral. But an
 examination of this encounters a result of Doob for Wiener measure, in that the
 set of continuous functions / forms a non-Wiener-measurable set.
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