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 A Note on Continuity Points of Functions

 §i.

 Using the fact that R is locally connected and locally compact, it can be shown
 that if/:RxR- » R is a separately continuous function with a closed graph,
 then / is continuous. Instead of proving this result, we will consider the question
 of how it might be generalized. Specifically, what conditions on spaces X, Y , and
 Z are necessary and sufficient to guarantee that a separately continuous function
 / : X X Y - ► Z with a closed graph is continuous? We give two examples that
 show some limitations.

 Example 1: Let X = Y = [0, 1] - { ^ : n 6 N} with the usual topology. Notice
 that X is not locally connected since 0 does not have a connected neighborhood.
 Define / : X x Y -> R by

 in, if x, y G for somen G N

 /(l'ï)=lo, otherwise.

 It is easy to see that / is separately continuous, has a closed graph, but is not
 continuous at (0,0).

 As we shall show, if X or Y is locally connected, then a function with the prop-
 erties mentioned above will be continuous. In fact, we may replace the codomain
 R by any locally compact space Z. But what if Z is not locally compact?

 Example 2: Let I = [0, 1] and let Z be a separable Hilbert space with or-
 thonormal basis {en}£Li- Let <ļ> be defined by

 f 1 - x - y2, if x2 + y2 < 1
 <f>(x,y)= ^

 ' 0, if®2 + y2 > 1
 and let

 <t>n(x,y) = <f>(2n(n + l)x - (2 n + l),2n(n + 1 )y - (2n + 1)),
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 for each n G N. Each function <1>n is 1 at the center 2n("ň+i)) c'rc'e
 inscribed in the square

 1 !1 r 1
 - -r, - X - -
 .n + 1 nj Ln + 1 nj

 and vanishes outside of this circle. Define / : I x I - ► X by f(x,y ) =
 E£Li (f>n(x,y)en. Then on each square (^, £) x £) we have /(x,y) =
 < pn(x,y)en and outside these squares / vanishes. It is easy to see that at each
 ( x,y ) ^ (0,0) / is continuous, and since /( 0,x) = /(x,0) = 0 for each x G I, f is
 separately continuous at (0, 0). In addition to this, / has a closed graph. However,
 / is not continuous at (0, 0) since

 for every n G N.

 §2.

 As we have seen in the first section, we cannot guarantee that a separately
 continuous function / : X x Y -»Z with a closed graph will be continuous if
 neither X nor Y is locally connected or if Z is not locally compact. However, we
 have the following theorem.

 Theorem 1. Let X and Y be topological spaces with Y locally connected. Let
 Z be locally compact and suppose that f : X x Y -y Z has continuous y-sections
 and connected x -sections. If f has a closed graph, then f is continuous.

 Proof: Let (a,b) G X xY and suppose / is not continuous at (a, b ). Then there
 is a neighborhood W of /(a, b ) such that, for any neighborhood N of (a, 6), f(N) (£_
 W. Since Z is locally compact, we may assume that W is compact. Let T> be the
 set of all neighborhoods U xV of (a, 6) such that f(U, b) C W and V is connected.
 Because of the continuity of the y-sections of / and the local connectedness of Y,
 the set D is a neighborhood basis at (a, b). Also V can be directed by containment
 (that is, a < ß if a D ß). Let a = U x V be an element of T>. Since f(U x
 V ) (£. W, there is a point ( x,y ) G U x V such that f(x,y) £ W , and since
 f{U , b) C W, f(x, b) G W. The set /(x, V) is connected because x-sections of / are
 connected. Hence there is a point ( xa,ya ) G U x V such that f(xa,ya) G W - W.
 Now ( f(xaìya ) : a G D) is a net in the compact set W - W. Hence it contains
 a convergent subnet (/(xn(a), yn(a)) '• a G T>'), which converges to some point
 c G W - W. Because T> is a neighborhood basis at (a, 6), the net

 {{,Xn(a),yn(a)i f{^n( or))) ■ ^ G I' )
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 converges to (a, 6, c), which implies that c = f(a,b ) since / has a closed graph.
 This is impossible since /(a, b) G W and c £ W - W. Therefore / is continuous.

 Remark 1 : As an immediate consequence of Theorem 1 we have that if X is
 locally connected, Y is locally compact, and / : X - ► Y is a connected mapping
 with a closed graph, then / is continuous. This can be easily seen by applying the
 theorem to the function / : {0} x X - * Y defined by /(0, x) = f(x).

 §3.

 The second part of this paper will deal with the problem of finding the weakest
 assumptions on spaces X , Y and Z and the sections fx, fy of functions f : XxY - >
 Z such that / has at least one point of (joint) continuity.

 One source of the results of this nature is the Baire-Lebesgue-Kuratowski-
 Montgomery theorem which says that if X and Y are metric and if f : XxY - ► R
 is continuous in x and is of class a in y, then / is of class (a + 1). Now, if a = 0
 and X x Y is Baire, then the set C(f ) is a dense G s subset of X x Y by Baire's
 Theorem, / being of l'* class (see [P3] for further discussion on this topic).

 Recently, G. Debs [De] has shown that if X is a special a-favorable pace (thus
 Baire), Y is first countable, X x Y is Baire, and f : X x Y -y M (M- metric) is
 such that all of its x-sections fx are continuous and all of its y-sections fy are,
 what he calls, of "first class", then the set C(f) is dense in XxY. (This result
 was unknown even in the case when X - Y = M = [0, 1].)

 Remark 2: The first-named author has obtained very similar results (see [PI]
 and [P2]) using an actually larger class of spaces X (the entire class of Baire
 spaces) and the somewhat unrelated class of functions / whose y -sections fv are
 quasi-continuous1 (instead of "first class") together with a strengthened form of
 the conclusion, namely:

 If X is Baire, Y is first countable and Z is metric and if a function f : X x
 Y - ► Z has all its x-sections fx continuous and has all of its y-sections fy quasi-
 continuous, then for all y Ç.Y, the set C(f) is a dense G$ subset in X X {y}.

 Following N.F.G. Martin [Ma], a function / : X - > Y is called quasi- continuous
 if for every x G X, for every open set U containing x, and for every open set V
 containing f(x ), there is an open nonempty set U' d U such that f(U') C V.

 A class of functions that is closely related to functions of first class of Baire is
 the class of pointwise discontinuous functions (see [Ku]). / : X - * Y is pointwise
 discontinuous (or, shortly: PWD) if the set C(f ) of points of continuity is dense

 1This class of functions has been defined by V. Volterra in R. Baire's paper [Ba] p. 75.
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 in the domain of f2.
 R. Baire showed the following result:

 Theorem. ( R . Baire) If f : R - ► R is of the first class of Baire, it is PWD.

 The converse to this theorem is not true (!) - see J.C. Oxtoby [02].
 For "nice" spaces, say X = Y = R, we have the following diagram (where

 " - >" denotes the inclusion):

 QUASI-CONTINUITY

 /" '

 CONTINUITY $ $ PWD

 ' 1ST CLASS /

 The survey paper [Ne] contains proofs of the implications pertaining to quasi-
 continuity in the above diagram.
 In this section we strengthen the result of G. Debs and the just mentioned

 result by the first-named author.
 The following Lemma clearly follows from Baire Category Theorem.

 Lemma: ([DŠ]), Theorem 1.1 and 1.2, p. 220).
 Let X be a Baire space and let M be metric. Then / : X - ► M is PWD iff /
 satisfies the following condition:

 (*) for every x E X, for every e > 0, and for every neighborhood
 U(x ) of x there exists an open, nonempty set U, U C U (x), such that
 d(f(z),f(y)) < e for any two points z,y 6 U .

 A pseudo-base, or simply a 7r-base, (see [01]) for a space (X,T) is a subset V
 of T such that every nonempty element U of T contains a nonempty element G of
 V.

 Theorem 2. Let X be Baire and Y be locally of ir -countable type (i.e., each
 open nonempty subset of Y contains an open nonempty subset having a countable
 TT-base) such that X x Y is Baire. Further let ( M,d ) be a metric space. Let
 f : X x Y -*■ M be a function such that all of its x-sections fx are PWD and all
 of its y-sections fy are continuous. Then C(f) is a dense Gg subset of X x Y .

 Proof: Given an arbitrary (xo, yo) G XxY,letU and V be open neighborhoods
 of xq and yo, respectively. Fix e > 0. Further assume V contains an open subset
 having a countable 7r-base {Gn}.

 2This class of functions was defined by H. Hankel in 1870.
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 Define the set An by
 An = {x G U : there are open Vx C V and Gn C Vx such that for each

 VuV2 6 Vx we haved(/(x,y!),/(x,y2)) < e/8}.

 For x G U, fx (being PWD) satisfies (*), so there is a nonempty open set Vx C
 V such that for each 3/1,^2 € Vi we have d(f(x,yi),f(x,y2)) < e/8. Since {Gn} is
 a 7r-base for an open nonempty subset of V, there is an index n such that Gn C Vx ,
 and it follows that U C UngjvAn. Since by definition U D UnçNAn, U = U„ewj4n.

 X being Baire, U is of second category. So, there is an index n € N and a
 nonempty open set U' C U such that An fl U' is dense in U'. Let (p, q) € U' x Gn.
 Since fq is continuous, there is an open nonempty subset U" C U' such that for
 each Xi,Xļ G U" we have d(f(xi,q),f(x2,q)) < |.

 Now consider the set

 S = (U" x {q})0 ((Annu") x Gn).

 It is easy to see that intŠ ^ 0.
 Now, take ( x , y) G U" x Gn and (u, u) G S. By continuity of fy, there is an

 open set Uy C U" such that for each x' G Uy we have d(f(x,y),f(xi,y)) < |.
 Since An H U" is dense in U" there is x* G Uy fl U" fl An. This gives (x*, y ) G S.

 Thus we get the following estimate:

 y), f(u, u)) < d(f(x*, y), f(x, y)) + d(f(xm, y), f(x*, q)) +

 + d(f(x*, q ), /(u, 9)) + d(f(u, q), /(«, v)) < | | | |

 This way for each (x°, y0), (x, y) G U" x Gn we get

 d(f(x°,y°),f(x,y)) < e.

 Now, since U" x Gn is an open, nonempty subset of U x V, we have proved
 that / satisfies (*) at (xo,yo) and hence, by the Lemma, C(f) is a dense Gg,M
 being metric and X x Y being Baire.

 We shall now exhibit an example showing that the assumption that the y-
 sections are continuous in the Theorem is real; that is, it can not be weakened to
 the one that the y-sections are assumed to be (only) PWD.

 Example 3: Let I = [0,1] and let R be the set of reals. Put Dn = {(x,y) :
 x - = 2^1 where k and p are all odd numbers between 0 and 2n}. Let
 D = UJJĻļ-Dn. It is easy to see that Ď = I2. Now, let us define / : P - » R by:
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 f(x,y) = 1 for ( x,y ) € D and f(x,y) = 0 if (x,y) £ D. The function / is not
 PWD as a function of two variables, however each section fx and fy is PWD -
 every such section has finitely many "points of jump" of /.

 Remark 3: Example 3 can be generalized to the following result, (see [P4],
 pp. 77, 78):

 Let X and Y be dense-in-themselves, separable spaces and let Z be a HausdorfF
 space containing at least two points. Then there is a function f : X xY - ► Z such
 that all the x-sections fx and all the ^/-sections fy are PWD, while / is not PWD.

 Remark 4: The result mentioned in Remark 2 can be further generalized;
 the assumption UY is first countable" can be weakened to UY contains a dense
 subspace of points of first countability" .

 Remark 5: Both Debs's Theorem and our Theorem 4 are partial (positive)
 answers to a spectacular problem of M. Talagrand [Ta]: Let X be Baire, Y be
 compact and let / : X x Y - > R be separately continuous. Is C(f) ^ 0?
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