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 Upper and Lower Bounds for the Packing
 Measure in Relation to the Hausdorff Measure

 In [3], Tricot and Raymond show that if the Hausdorff measure of a set is
 equal to the packing measure of the set (assuming that the Hausdorff dimension
 of the set is equal to the packing dimension of the set), then the dimension is an
 integer. In this paper, the author considers the case when the Hausdorff measure
 is not equal to the packing measure. Since the packing measure is the largest
 dimensional measure, it would be informative to have an estimate of how much
 larger the packing measure is with respect to the Hausdorff measure. Also, it would
 be informative to have an upper bound for the packing measure. It is assumed
 in this paper that information about the Hausdorff measure on a set is known so
 that a Hausdorff density function and be used to calculate an upper bound and a
 lower bound for the packing measure on that set. The first part of the paper is a
 generalization of an inequality in [3], and the second part of the paper considers
 the special case of the symmetric (Cantor-like) set on the real line.

 Let the function h : [0, oo] -* R+ be continuous, increasing, Ä(0) = 0, and
 limsupr_,.0 h(2r)/h(r) = h* be finite. An example of such a function is h(x) =
 xa, a > 0, where h* = 2°.

 First, the following definitions are needed. In these definitions, B(x,r) is the
 ball with center x and radius r in Rn, and uh(E ) will denote the Hausdorff measure
 of a set E.

 Definition 1: (Packing measure). The premeasure of a set E is defined by
 HP(E) = lim¿_o[sup{5Z¿ h(2r,) : the balls B(xļ, r¿) are pairwise disjoint, a;,- G E ,
 and r, < <$}]. The packing measure is hp(E ) = inf{5Z, Hp(Eì) : E C U{Ei }.

 Definition 2: (Symmetric Derivation Basis Measure). Let ¿(x) be a positive
 real function on Rn. Then HS(E ) = sup{^¿ /i(2r,) : the collection of B(xi, r¿) are
 pairwise disjoint, x¿ € E , and < <*>(£,)}. The symmetric derivation basis measure
 is hs(E) = inf {HS(E) : i(x) is any positive function} .

 It was shown in [1] that the packing measure is the symmetric derivation basis
 measure.
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 Definition 3: Lower Hausdorff density function. d^( x ) = liminfr_>o«'l[^' H
 B(x,r)'/h(2r).

 A lower bound for the packing measure is given in the first theorem.

 Theorem 1: If {En} are disjoint, /^-measurable sets such that E = £/„£„, and
 if < an < 1 for x € Eni a.e. uh, then hp(E ) > J2nañluh(^n)-

 Proof: Since d^( x ) < an < 1, for each ¿(x) > 0, there exist infinitely many r <
 i(x) such that uh[Enr'B(x, r)]/h(2r) < an. Therefore, a~1uh[EnC'B(xi r)] < h(2r).
 Using the Vitali covering theorem for Hausdorff measures and the fact that the
 symmetric derivation basis measure is the packing measure, a~1uh(En ) < hp(En).
 Since the sets { En } are /ip-measurable, a~1uh(En) < hp(E).

 The obvious corollary is the following:

 Corollary 1: If d£n( x ) < a < 1, a.e. uh on E , then a~1uh(E ) < hp(E).

 Let h(x) be defined as above and let the function g : [0, oo) - »■ R+ be continu-
 ous, increasing, </(0) = 0. Suppose further that limsupr_.0 <jr(2r)/<7(r) = g* is finite,
 and g(x) < h(x) for all x < 1. An example would be g(x) = x13 and h(x) = xa,
 when a < ß.

 Theorem 2: Let g(x) < h(x) for all x < 1 and let {En} be pairwise disjoint
 sets such that E = UnEn. If 0 < a„ < x ) for x G En, a.e. gp, if gp(E) < oo,
 and if < oo, then gp(E) <

 Proof: Since 0 < an < ¿^(x) for x E En, there exists an ro(x) <1/2 such that
 if r < r0(a:), then an < uh'En fl B(x,r)'/h(2r). Therefore, h{2r) < a~luh[En fl
 B{x,r)'. Since r0(x) < 1/2, 2r < 1 and g(2r ) < a~luh[En fi ß(x,r)]. Therefore,
 for any positive function S(x) < r0(x) for all x G Eny Gs(En) < a~1u/l(£Jn). Hence,
 g»{En) < a~1uh(En ) and gp(E) < En</p(^n) <

 The obvious corollary is the following:

 Corollary 2: Let g(x) < h(x) for all x < 1. If 0 < a < ¿^(x) for x Ç E, a.e.
 gp and gp(E) < oo, then gp(E) < a_1u'l(^).

 Theorem 2 and Corollary 2 are of special interest when g(x) = and h(x) =
 Xa. In this case, ß is the packing measure dimension of a set E, ß = Dim E, and a
 is the Hausdorff dimension of the set E, a = dim J5. The inequality a = dim E' <
 Dim E = ß always holds.
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 2 - The Symmetric Set

 For a specific class of sets on the real line, the lower bound for the packing
 measure is studied. This class of sets is given in the following definition.

 Definition 5: (Symmetric Set). For n = 1, remove an interval of length b'
 from the center of [0, 1] leaving two closed intervals each of length ax. For n = k,
 remove an interval of length bk+i from the center of each of the 2k closed intervals
 of length ajt (with bk+i < at) leaving 2fe+1 closed intervals of length a^+i- The
 symmetric set, E, is defined as E = ^[U^An] where {i4n'}í=i are the closed
 intervals of length an.

 For this section h(x) = xa, where 0 < a < 1, and the following notation is
 used: hp = pa, uh = ua and hs = sa. Also, assume a is the packing measure
 dimension of the symmetric set E and the HausdorfF measure dimension of E. It
 is given in [2] that when the dimensions are equal on the symmetric set E, then
 a = limn_>00[log2-n/logan].

 An elementary computation now shows that:

 Observation 1: Let E be a symmetric set. Then a = limn_>00[log2~n/ logan]
 if and only if limn_00 = (1/2)1/0. As liminf an+i/an < liman1/" it follows
 that liminfan+i/an < 2~1/Q.

 The following theorem shows that under certain conditions a constant 7 < 1
 exists such that dma(x , E) < 7 for all x in the symmetric set E.

 Theorem 3: Let E be a symmetric set. If the HausdorfF measure dimension a
 is equal to the packing measure dimension, then dma{x , E ) < (l/2)a[l/(21/a - 2)]a.

 Proof: Since liminfn_>00(an+i/a„) < (1/2)1/0 < ß < (1/2), there exist in-
 finitely many n such that (an+i/on) < ß • Hence, for those same infinitely many
 (on+i,ûn)j bn+ļ/an - (on 2fln_( -i)/on > (1 2ß). Therefore, an/bn+ļ < 1/(1 2/9).
 Now, let x be any endpoint of E, and let bm be the length of the contiguous interval
 of E with one of the endpoints being x. Then, there exist infinitely many of the
 above (an+1,an) such that 6n+1 + an+i < bm. Let r = an+1 + bn+1. Therefore

 uQ[En B(x,r)]/(2r)a < (an+i)a / (2bn+1)a =

 (l/2)>n/6n+1)>n+1Kr < (l/2)a[l/(l -2ß)]a[ß}a-

 Let i be a limit point of E which is not an endpoint of E. Then x is contained
 in infinitely many closed intervals of length (a„+i, an) given above with respect to
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 the endpoints. Therefore, r > 6„+i and

 u°[E n B(x,r)]/(2r)a < (a^)"/(2K+1)" < (1/2)«[1/(1 - 2j»)]<W.

 Letting n - ► oo and ß approach (1/2)1/0,

 d^ix.E) < (l/2)a[(21/a/(21/a - 2)]0f(l/2) = (l/2)0f[l/(21/°i - 2)]Q.

 The following Corollary is immediate.

 Corollary 3: Let E be a symmetric set. If the HausdorfF dimension a is
 equal to the packing dimension and if (l/2)a[l/(21/ot - 2)]0f < 1, then pa(E ) >
 2*(2 i/o, _ 2 )auQ(E).

 It can be observed that 2 = 20r(2 - 2)a when a = 1/2. Therefore pa(E ) >
 2 ua(E) when a < 1/2. It can also be observed that a must be less than log 2/
 log(5/2) in order for Corollary 3 to be valid and this happens when a is less than
 or equal to approximately 0.75647.

 The author wishes to thank the referees for their many helpful comments.
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