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 Lusin's Theorem

 1. Lusin's theorem [1], [2], is one of the simplest important theorems in
 classical real analysis. Its character is that of a folk theorem and seems to
 have been known to the Italian mathematicians even before it was published
 by Lusin.

 We state the theorem for measurable functions on the interval I = [0, 1].
 Let f : I -* R be a measurable function. For every e > 0 there is a closed
 set F C / with m(F) > 1 - e, such that / is continuous on F relative to
 F. By the Tietze extension theorem, we may state Lusin's theorem in the
 following form. If / : I - ► R is measurable then for every e > 0 there is a
 continuous g : I - ► R such that f(x) = g(x), except on a set of measure less
 than e. It seems plausible that there is a Baire 1 function equal to / almost
 everywhere. It is interesting that this is not true. However, it is true that for
 every measurable

 f : I -* R there is a Baire 2 function g such that f(x) = g(x) almost
 everywhere.

 It is convenient for us to express Lusin's theorem in another form. Denjoy
 defined approximate continuity and showed that / : I - ► R is measurable if
 and only if it is approximately continuous almost everywhere. Then Lusin's
 theorem takes the following form.

 A function / : I - * R is such that for every e > 0 there is a continuous g
 such that the set of x for which f(x) ^ g(x) is of measure less than e if and
 only if / is approximately continuous almost everywhere.

 2. We noted that for every measurable f : I -* R there is a Baire 2
 function g such that f(x) = g(x) almost everywhere. We now state a number
 of related facts.

 The above function of Baire class 2 may be taken to be the limit of an
 increasing sequence of lower semicontinuous functions. This is known as the
 Vitali- Caratheodory theorem.
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 The following question has been considered. For a measurable / : / - ► R
 is there a homeomorphism of I onto I such that / o h is almost everywhere
 equal to a Baire 1 function? Gorman, [3], showed that if / is measurable and
 assumes only finitely many values then there is a homeomorphism h such that
 / o h is almost everywhere equal to a Baire 1 function. He then showed that
 this is false in general. He gave an example of a measurable / such that fok
 is not equivalent to a Baire 1 function for any homeomorphism h. It was later
 observed that the function / of this example, although measurable, is such
 that, for some homeomorphism h, the function fohis not measurable. In this
 regard, a function / has been called absolutely measurable if foh is measurable
 for every homeomorphism h. It was then shown by Bruckner, Davies, and
 Goffman, [4], that if / is absolutely measurable there is a homeomorphism h
 such that / o h is almost everywhere equal to a Baire 1 function. The proof is
 not easy.

 3. It is natural to ask about arbitrary, rather than measurable, functions.
 Sierpiński [5] proved the existence of an / such that, for every E of the power of
 the continuum, / is not continuous on E relative to E. Using the continuum
 hypothesis, / is not continuous on any uncountable E relative to E. The
 analogue of Lusin's theorem, if there is one, must be fax weaker for arbitrary
 functions. A noteworthy theorem of Blumberg, [6], assumes this role. The
 theorem asserts that for any arbitrary / : I - ► R there is an everywhere dense
 set E C I such that / is continuous on E relative to E. By the Sierpiński
 example, E may have to be countable. A considerable amount of work has
 been done on spaces for which Blumberg's theorem holds. A topological space
 is called a Blumberg space if for every / : X - ► R there is an everywhere dense
 E C X such that / is continuous on E relative to E. Motivation for this work
 was furnished by a simple result of Bradford and Goffman, [7]. A topological
 space X is called a Baire space if every open set in X is of the second category
 of Baire, i.e., it is not the union of countably many nowhere dense sets. The
 theorem in question says that a metric space is a Blumberg space if and only
 if it is a Baire space. Of the considerable amount of research which followed,
 only one result will be mentioned. The density topology on R has as its open
 sets those measurable sets E C R such that every x € E is a point of metric
 density 1 of E. It is a fact, not hard to prove, that this is a topology. H.E.
 White, [8], showed that the reals with the density topology constitute a Baire
 space which is not a Blumberg space.
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 There is a subtle and beautiful theorem on arbitrary functions which serves
 as an analogue of the theorem that every measurable function is equal almost
 everywhere to a Baire 2 function. This is a theorem of Saks and Sierpinski,
 [9], who proved

 the following noteworthy fact in 1928. If f : I R is arbitrary, there is a
 function g : I - ► R of Baire type 2 such that, for every e > 0, | f(x) - <7(0;) | < e
 on a set of outer measure greater than 1 - e. A proof was given by Blumberg,
 [10], in 1935 using his measurable

 boundaries of an arbitrary function. The measurable boundaries of an
 arbitrary real function / are measurable functions u and I such that, for almost
 every x , £(x) < f(x) < u(x), and both u(x) and t{x) are fully approached by
 /, i.e., for every e > 0, and almost every £, the sets for which |/(x) - u(x)| < e
 and |£(x) - f(x)' < e have outer metric density 1 at £. The Saks-Sierpinski
 theorem follows readily.

 A simple proof was given in 1948 by GofFman, [11]. The proof uses the
 fact, not hard to prove, that for every e > 0 there is a continuous g such that
 I f(x) - <7(x)| < e on a set of outer measure greater than 1 - e, and the following
 lemma. For every e > 0, tj > 0, and continuous g such that 'f(x) - <jr(ar) | < e
 on a set of outer measure greater than 1 - e, there is a continuous h such that
 |</(:r) - h(x) I < e on a set of measure greater than 1 - e, and | f(x) - ã(x)| < rj
 on a set of outer measure greater than 1 - r¡. These matters have been treated
 in a general setting by GofFman and Zink [12].

 4. The functions, /, which are such that for every £ > 0 there is a con-
 tinuous g such that f(x) = g(x), except on a set of measure less than e, are
 the functions which are approximately continuous almost everywhere. What
 about the functions which may be approximated in this way by the continu-
 ously differentiable functions? This question was treated by Hassler Whitney,
 [13]. We first note that Lusin's theorem holds for functins on fi" with little
 change in the proof. We recall that a function / on RJ1 is approximately dif-
 ferentiable at a point £ if its total differential exists at £ relative to a set E
 whose metric density is 1 at £. Whitney showed that / is such that for every
 £ > 0 there is a g € C1 such that the set at which f(x) ^ g(x) has measure
 less than £ if and only if / is approximately differentiable almost everywhere.
 The proof is easy for n = 1 but is difficult for n > 1 and uses the famous
 Whitney extension theorem.
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 5. We now turn to Lusin type theorems for one-one mappings. We first
 discuss the case of arbitrary one-one mappings. Let S C R2 be an arbitrary
 set which, for convenience, has outer measure 1. Let F = (/,/-1) and G =
 (g, g-1) be arbitrary one-one mappings of S onto itself. Let | p - ç| be the
 distance between points p and q in R2. The distance d(F, G) between F and G
 is defined as the infimum of all e > 0 for which there are sets A and B in S with

 me(A) > 1 - e and me(B) > 1 - e, such that for every x € A, | f(x) - </(x)| < e
 and for every x 6 B, |/_1(i) - <7-1(a:)| < e. Goffman obtained the following
 result, [14], in 1943.

 THEOREM. If Q is a closed unit square and F = (/, /-1) is a one-one
 mapping of Q onto itself, then for every e > 0 there is a homeomorphism
 G = (gì g'1) °f Q itself such that d(F , G) < e.

 This theorem holds for all n > 2 but fails to hold for n = 1.

 The measurable case is more interesting, [15]. A one-one mapping F =
 (/,/-1) is measurable if / and /-1 are both measurable. Let In be the closed

 unit n cube, n > 2, and let F = (/, /-1) be one-one and measurable on
 /„ onto /„. Then, for every e > 0, there is a homeomorphism G = (<7,<7_1)

 of /„ onto itself such that f(x) = g(x) and f~l{x) = p-1(x) on sets of measure
 greater than 1 - e. This fact does not hold for n = 1 as the following example
 shows. Let

 ř 2x, 0 < x < i

 ^ ļ 1 - 2s, ' < x < 1.
 There is no homeomorphism which has the needed property for e = For
 n = 2, the proof may be accomplished by first showing that, for any e > 0, F
 is a homeomorphism between zero dimensional

 compact sets of measure greater than 1 - e and then extending this home-
 omorphism to one between /2 and itself. This proof does not work for n > 3.
 Indeed, Antoine, [16], gave an example of a homeomorphism between zero di-
 mensional compact sets in /3 which does not extend to one between /3 and
 itself.

 In this regard we introduced in [15], a notion of sectionally zero dimensional
 sets. A set E C In is called sectionally zero dimensional if for every hyperplane
 ir, parallel to a face of /n, and e > 0, there is a hyperplane ir' parallel to x,
 whose distance from 7 r is less than e, which contains no points of E. It is
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 shown that for every measurable F = (/, /-1) there are compact, sectionally
 zero dimensional sets A and B in /„ each of measure greater than 1 - e, such
 that F is a homeomorphism between A and B. It is then shown that every
 homeomorphism between compact sectionally zero dimensional sets in /„ can
 be extended to a homeomorphism between In and itself, for n > 1. These facts
 yield the desired result.

 The following related fact holds for the case 1 < n < m. If 1 < n < m and
 is a one-one measurable mapping of /„ onto Im then, for every

 e > 0, there is a homeomorphism G = (g, g-1) between /n and a subset of 7m
 such that f(x) = g(x) on a set of n measure greater than

 1 - e and /-1(ar) = <7-1(x) on a set of m measure greater than 1 - £.

 6. There are results which bear a relation to Whitney's theorem similar to
 the one the above result bears to Lusin's theorem. This is the work of H.E.

 White, [17]. Some definitions are needed.

 A one-one mapping (T, T~l) of /„ onto itself is called a C1 diffeomorphism
 if T and T~l are both continuously differentiate. The problem is to find
 necessary and sufficient conditions on a one-one measurable transformation
 (T, T-1) in order that, for every e > 0, there be a diffeomorphism (S, S'1)
 such that T(x) = S(x ) and T~1(x) = 5-1(a:) on sets of measure greater
 than 1 - £. It is immediate that a necessary condition is that T and T~l be
 approximately differentiate almost everywhere. Two other conditions which
 appear to be necessary from the fact that they are obeyed by diffeomorphisms
 are a) both T and T'1 take sets of measure zero into sets of measure zero and
 b) the Jacobian has the same sign almost everywhere. These three conditions
 turn out to be sufficient. This yields the

 THEOREM. A one-one measurable transformation (T, 71-1) of In onto it-
 self n > 1, is such that for every e > 0 there is a C1

 diffeomorphism (S, S'1) such that T(x) = S(x) and T~l(S ) = <S'"1(x) on
 sets of measure greater than 1 - e if and only ifT and T'1 are almost every-
 where approximately differentiable, the approximate Jacobian of T is almost
 everywhere greater than or equal to zero, or almost everywhere less than or
 equal to zero , as is the approximate Jacobian ofT~l, and T and T~l take sets
 of measure zero into sets of measure zero.
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 7. The question regarding one-one mappings has been considered for Blum-
 berg's theorem as well. Let / = [0, 1] and let (/,/-1) be an arbitrary one-one
 mapping of I onto 7. It is asked whether there are everywhere dense sets A
 and B in I such that (/, /-1) is a homeomorphism between A and B. In this
 regard, GofFman, [18], gives an example of an (/, f~x) of I onto itself such that
 if A C I is everywhere dense and if / is continuous on A relative to A then
 either f(A) is not everywhere dense or there is an x G f(A) such that /-1
 is not continuous at x relative to f(A). This shows that the sought result is
 false.

 8. Lusin type theorems exist for three important classes of functions. For
 n = 1, these axe the absolutely continuous functions, AC, the functions of
 bounded variation, BV , and the continuous functions of bounded variation,
 CBV. Let the domain be / = [0, 1]. For / € BV the following fact holds, [19].

 If / € BV, for every e > 0 there is a g € C1 such that f(x) = g(x) on a set
 of measure greater than 1 - e and 'vj - vg' < e. The notation v¡ designates the
 variation of / on J. For absolutely continuous functions the following holds. A
 function of bounded variation is absolutely continuous if and only if for every
 e > 0 there is a g G C1 such that if E is the set for which f(x) g{x) then
 m(E ) < e, fE 'f'(x)'dx < e, and fE 'g'(x)'dx < e.

 This fact may be expressed in terms of distribution derivative. For a func-
 tion / of bounded variation, the derivative, in the sense of distributions, is a
 totally finite measure. This measure is the integral of a summable function if
 and only if the function / is absolutely continuous, and is a nonatomic measure
 if and only if the function / is continuous and of bounded variation. Accord-
 ingly, / is absolutely continuous if and only if for every e > 0, there is a g € C1
 such that if E is the set for which f(x) ^ g(x) then m(E) < e, vj(E) < e and
 Vg(E) < 6.

 The case for functions in CBV is much more subtle. The interesting treat-
 ment of this topic is the work of Fon-che Liu, [20]. Let [-00,00] be the two
 point compactification of the real line.

 An extended real valued function on I = [0, 1] is called weakly continuous
 on J if it is continuous on I into [-00, 00]. A real valued function on I is called
 a weak Cl function if its derivative exists (possibly +00 or -00) and is weakly
 continuous. The following theorem holds. If / is real valued, continuous, and
 of bounded variation on I = [0, 1], for every e > 0 there is a weak C 1 function
 g such that, if E is the set for which f(x) ^ g(x), then m(E) < e, vj(E) < e,
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 and Vg(E) < e.
 The proof is delicate and uses the following decomposition theorem which

 is of independent interest.
 For / : / - ► R of type CBV, there is a decomposition of / into sets

 / = (U~1A,)U(U~,B„)UW

 which are pairwise disjoint, / is monotonically nondecreasing on each An,
 monotonically nonincreasing on each Bn and v/(N) = 0.

 9. There are Lusin type theorems for classes of functions of n variables
 which are analogous to the classes AC,BV, and CBV of functions of one

 variable, [21], [22], [23]. These classes will now be defined. Let (xi,...,xn)
 be a rectangular coordinate system in n space. Let In be the unit n cube.
 A function / : 7n - ► R is said to be of type BV if there is an equivalent
 g such that, for every i = l,...,n, g is of bounded variation in x, for all
 values of the remaining n - 1 variables, and these variation functions are
 all summable. If the equivalent function g may be taken to be absolutely
 continuous in x as well, then / is said to be in AC. Finally, if instead of
 absolute continuity, we have continuity, then / is said to be linearly continuous.
 These definitions may be phrased in terms of distributions. The functions in
 BV are those whose distribution partial derivatives are totally finite measures.
 For n = 1, all such measures are obtained in this way. For n > 1, those
 measures which are absolutely continuous with respect to Hausdorff n - 1
 measure are obtained. The functions in AC are those whose partial derivatives
 are absolutely continuous with respect to Lebesgue n measure. The linear
 continuous functions in BV are those whose partial derivatives are measures
 which vanish on sets of finite Hausdorff n - 1 measure. The apparent difference
 between n = 1 and n > 1 is discussed in [24] and is shown to

 be unreal.

 Lusin type theorems will now be stated for these classes of functions.
 Lebesgue n measure will be designated by m(E), the n partial derivatives
 by Vļ(E), . . . , vn(E), and the total variation measure by v(E). Recall that the
 total variation measure is defined as follows. Let / : /„ - ► R be in BV and let
 vi, . . • , vn be the partial derivative measures of /. For every Borei set E, let

 v(E) = sup £EM£))2]1/2
 j= i ¿=i
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 for all finite partitions E' , . . . , Ek of E into pairwise disjoint Borei sets. The
 following Lusin type theorems hold for BV and AC. Let /:/„-► iž be in
 BV and let be the partial derivative measures and vj the total variation
 measure of /. For every e > 0, there is a g 6 C1 such that f(x) = g(x), except
 on a set of measure less than e, and 'vj(In) - vg(In)' < e. This interesting
 theorem was proved by J.H. Michael, [25], with g Lipschitzian . The slight
 improvement from Lipschitzian to C1 was made by Goffman, [26], who also
 showed that this result is best possible. For / G AC, the Lusin type theorem
 is as follows. If f : In -* R is in AC then, for every e > 0, there is a g 6 C1
 such that if E is the set for which f(x) ^ g(x ), then m(E) < e, vj(E) < e,
 and Vg(E) < e. The proof follows from the BV case.

 The situation is more complicated for the linearly continuous functions of
 bounded variation, [27]. Designate this class by L. It is noted that functions
 in L may be everywhere discontinuous. The cases n = 2 and n > 2 are treated
 separately. The latter seems to be much more difficult.

 Let n = 2. Let / : /2 - » R be in L, i.e., linearly continuous and of bounded
 variation. The Lusin type theorem is as follows. For every e > 0, there is an
 everywhere continuous g 6 BV such that if E is the set for which f(x) ^ g(x),
 then m(E ) < e, vj(E) < e and vg(E) < e, [28].

 For n > 2, the known result is as follows. If / € L, then for every e > 0
 there is an everywhere approximately continuous g € BV such that if E is the
 set for which f(x) jí g(x) then m(E) < e, vj{E) < e, and vg(E ) < e. The
 converse also holds, [29].

 An interesting side remark is that if / 6 BV is everywhere approximately
 continuous then / € L.

 11. Finally, Lusin type theorems hold for Sobolev spaces. Let Un be the
 unit ball in n space and let A be the functions with compact support in Un
 which are of class Cl.

 Suppose n > 1. For every p > 1 consider the norm

 n/n? = i/u+èi^i"
 «=1 oxi

 where | • |p is the. usual Lp norm.
 The completion Wf of A' with this norm is a Banach space which is called

 a Sobolev space.
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 F.C. Liu obtained the following important result, [30]. If / 6 Wļ, then for
 every e > 0, there is a g 6 Cl such that if E is the set for which f(x) ^ p(x)
 then the Sobolev norms of / and g , restricted to E, are less than e.

 Similar results were obtained by Liu for higher order Sobolev spaces. Deep
 refinements of these results were obtained by Michael and Ziemer, [31].
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