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 Three Methods of Constructing co-Limit Sets1

 1 . Introduction

 Our main objective is to discuss three methods of constructing w-limit sets

 for functions /: [0, 1 MO.l). A set Kc(0,l] is called an w-limit set for / if

 there exists io 6(0,1] such that K is the cluster set of the sequence

 (xn) - ( /""(io))- As usual fi- f and - fo f11 , n - 1, 2, 3, .... We write

 (aj (xo ) - K to indicate K is the co-limit set of x under f .

 Let s begin by presenting a bit of background material that will be relevent

 to our discussion. First, for (?, the class of continuous functions, every w-

 limit set is either a compact nowhere-dense set, or consists of a finite union

 of closed intervals. Furthermore, each nonempty set satisfying one of these

 two conditions can be realized as an «-limit set for some f e <?. (ABCPl, (BS].

 For sufficiently well-behaved continuous functions one finds that either

 there is a single set that serves as «-limit set for almost all x 6 (0,1], or there

 is some form of chaos (or both). For the typical continuous f, however, there

 will exist continuum many pairwise disjoint nowhere-dense perfect sets that

 collectively serve as «-limit sets for almost all x 6 (0,1]. A bit more precisely,

 there exists a set of full measure M, such that for every x 6 M, ccy(x) is a

 Cantor set Kx> and if x, y e M, x * y, then Kx n Ky - 0 (ABL].

 ' This paper is an expanded version of a talk presented at the FOURTEENTH ANNUAL
 SUMMER SYMPOSIUM IN REAL ANALYSIS, SAN BERNARDINO
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 Now let Mf ) denote the collection of w-limit sets of f . Given a nonempty

 family ft of nonempty compact sets it is natural to ask whether there exists

 ftC such that 'K » A(/). or ft c Mf). Various well-known results indicate

 restrictions on a family ft if it is to satisfy ft = A (f) for some f e C. For

 example, if ft contains a 3-point w-limit set, it must contain n-point co-limit

 sets for every positive integer n. Similarly, a finite «-limit set cannot be a

 proper subset of any other finite w-limit set for f e <?. (If one drops the

 continuity requirement entirely, however, there are no restrictions. Given

 any nonempty family ft, there exists a measurable function f for which ft =

 Mf) [BCP] ).

 There are also some positive results. For example, given any nonempty

 family ft of nowhere-dense compact sets in 10,1], there exists a continuous

 f : [0,1 WO, 1) such that to each K e ft corresponds a set K*c [y, |) that is

 homeomorphic to K, and a number x e [0, U such that cûy(x)n|1 , |] = V

 [ABCP].

 We shall discuss some methods that seem to be usefull in constructing o>-

 limit sets or families of u-limit sets for functions, but our emphasis will be

 on functions in the larger class ££j of Darboux functions in the first class of

 Baire. This class arises naturally in connection with Newton's Method. We

 discuss this briefly.
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 2. Newton's Method

 Newtons Method for estimating the zeros of a differentiate function f

 entails iterations of the function <j(x) = i - . It is more convenient to

 consider a function defined on all of 91 here since iterations may well take

 one out of any predetermined interval I. And some conventions must be

 adopted when an iterate hits a point at which f'(x) vanishes. Even for

 polynomials of degree > 3, some sort of "random" behavior is possible for

 orbits of certain points and, when all the roots are real, a Cantor set of points

 will escape IR, that is, the orbits of points in that set hit the set on which f

 vanishes.

 Now, Newton's method makes sense for any differentiate function, not just

 for e1 functions. The function 9 need not be continuous. It must be in JDBi,

 however, on any interval on which f' does not vanish. This suggests

 studying the iterative behavior of functions in Ü)©j or in certain subclasses

 of £>39 1 that are larger than (?.

 3. Constructions:

 Let ft be a nonempty family of compact subsets of I - [0,1], and let 5" be a

 family of functions from I to I. For f e 3", let Mf) denote the class of w-limit

 sets for f . For 'K and 5" given, does there exist f 6 ? such that 'K c Aif)?

 We discuss three methods that have proved useful in approaching this

 problem and its varients: A - Arithmetic methods; B - Interval-orbits, and

 C - Specifying orbits.
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 A - Arithmetic Methods.

 We illustrate this method by constructing functions whose iterative patterns

 are built into the ternary representations for numbers in I. Let C be the

 ordinary Cantor set, let K = y C + y . and let S consist of those i e I with

 expansions of the form x - .IOA1IOIOA2IOIOA3IO. . . where each Ai is a

 block of O's and 2 s. Let 0(x) = 1 - 3 dist(x. K). The graph of 9 over the

 complement of K consists of line-segments of slope ± 3- On [3,3] . these

 segments form spikes on the intervals contiguous to K. On K itself, 9=1.

 Intuitively, one sees that while all points whose orbits land on K will be

 absorbed by 0 two iterations later, there will be many points that repeatedly

 narrowly ņīiss this fate: they will land near K, escape near 1, then near 0,

 then continually triple in value until they are again near K, and on and on.

 One sees this behavior for all x E S. Indeed, simple arithemetic shows that

 for x - . 1 0 Ai 10 1 OA2IO 1 OA3IO. . . , the smallest integer ni such that

 0ûi(i) e [ļ,|] leaves <jni(x) - .IOA2IOIOA3IO. . . .

 In effect, the first block Aj has been dropped. If Mj is any nonempty closed

 subset of Kn|ļ , we can choose the blocks Ak so that the values

 .lOAiclOlOAfc+ilO... approximate all points in M| and no others, thus the

 part of the orbit of x that lies in [j , clusters exactly on Mi, i.e.

 <^(x)nl} , |] - Mi .

 We cannot use this idea to obtain a continuous f that realizes a

 homeomorphic copy of every nonempty nowhere-dense set as an w-limit set.

 But we can extend the "first return map" of 9 that maps S onto S to a
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 function G in JÛ®i that maps [j , onto itself. In fact using a theorem in

 [PLl, we can choose G to be approximately continuous, (and therefore a

 derivative). Thus F does realize every nowhere-dense compact set (up to

 homeomorphism) as an co-limit set.

 B - Interval-Orbits.

 Suppose we believe a function f has a certain set M as an «-limit set. We

 wish to prove the existence of an x e I such that the sequence ( f n(x) } has M

 as its cluster set. We might proceed as follows. We find an interval Ko whose

 orbit approximates M at least for a while. Inside Ko we find a closed

 interval K| whose orbit approximates M for a longer while and for which the

 error tolerance is smaller. We continue in this manner obtaining a nested

 sequence of intervals whose intersection does the job.

 A recent example of this method [BS] may serve as an illustration. Suppose

 M is an uncountable nowhere-dense compact set. (The reader may wish to

 ~ Vļl
 use the set {0, 1} u U , of the previous section, as a model with Mo - (1).

 i 3
 Mt

 (ao) - (0), and Mn - "TT ) Let ao be a condensation point of M. One shows
 3

 first that one can express M as a disjoint union of compact sets

 M - (ao) u U Mn , in such a way that there is a function /:! » I with the
 n-0

 following properties:

 (i) f(Mn) = Mn-i foralln>0

 (ii) f(M0)- (a0)

 (iii) For every u 6 M and any neighborhood U of u, /(U) is a neighborhood

 of /(u).
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 One then shows that given u, v e M. U a neighborhood of u, and d>0, there is

 a closed interval Ko c U and a positive integer n such that /"(Ko) is a

 neighborhood of v and f KKo) is in the d -neighborhood of M for all i*n.

 Letting /"(Ko) play the role of U, decreasing d, and choosing an appropriate

 subinterval K| of Ko, one finds the orbit of K| reaches another point w e M in

 a finite number of steps, passing near v on the way. One continues

 inductively in the obvious manner and shows that the intersection of the

 nested sequence of closed intervals Kn obtained is a point having M as

 «-limit set.

 Varients involving countable compact sets M lead to the general result that

 every nonempty nowhere-dense compact set MCI is an «-limit set for some

 fsC IBS].

 The technique has also been useful for proving that a function in £33 1* can

 achieve certain combinations of sets as (o-limit sets. In this connection,

 Keller [Kl has shown that any individual set M that is an «-limit set for an

 f€ JDBi* is also an «-limit set for some continuous function. But the

 discontinuities allowable for functions in JOBj* permit one to obtain

 combinations of «-limit sets not possible for continuous functions.

 Intuitively, a discontinuity point can serve as a "distribution" point for

 intervals near it. For example, f(i) - |sin , (f(0)-0) has for each subset A

 of {1 : n-1,2,3,...} the set (0)uA as an «-limit set. One simply chooses

 intervals in the process described above whose orbits alternate between

 being near 0 and being near points of A.
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 Keller has used a refined version of this argument to show that there is a

 function / in JDBj* (in fact, with only one discontinuity point) that has a

 homeomorphic copy of every nonempty, nowhere-dense closed set as an

 w-limit set. In addition, for each n - 1.2

 pairwise disjoint intervals that is in Mf). This improves a result in [BCP1

 where a function in JDSBj was found with the same properties.

 Keller's example has homeomorphic copies of all nonempty closed subsets of

 a Cantor set P as où- limit sets. A similar construction gives rise to an

 / e JDB|* that has each such subset as an «-limit set. But such an / must

 be discontinuous at each point of P. To achieve even all doubleton sets of the

 form (0,p) and (l,p) (p e P) as w-limit sets, the oscillation of / must be 1 at

 each p of P.

 How well does this technique carry over when we deal with functions in

 iDS3| that that are not necessarily in JOBT? We're not sure. Suppose we

 wanted to construct an / e JOtBj that has a certain collection of sets as as

 w-limit sets. Perhaps we conceive a candidate by visualizing where the

 distribution points should be. Each distribution point has to be a point of

 discontinuity of the function.

 If the set is dense in some interval I, our previous argument has problems.

 We can't be sure we can map a small interval in I onto a small interval as

 needed. Perhaps we can choose an appropriate set H, residual in some small

 interval, and require that /(H) be residual in a small interval where needed.

 Perhaps an argument using relative intervals of a residual set can be carried
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 out. But what can we say about the intersection of the nested sequence of

 relative intervals that arises? How can one be sure it is not empty? And, if

 it is nonempty, how can we be sure the point it defines has the desired

 orbital behavior? Perhaps some form of the Banach Mazur game could be

 usefully applied to the convex hulls of the relative intervals of H. We tried,

 without success, to use such an idea to find an /eJ033i which had

 hoeomorphic copies of every compact (nonempty) subset of I as w-limit sets.

 The difference between our earlier examples and the example sought here is

 that we wish to consider also those sets that have interiors but are not just

 finite unions of intervals. No function in JÛÏÏi* can have such a set as an

 w-limit set, but functions in JDB| can. It is still an open problem to

 determine whether a "universal" function FeJDSj exists. (Universal up to

 homeomorphism, of course).

 C - Specifying orbits.

 Let's view the idea of the method of the previous section in the following

 way. We choose an interval I whose orbit for a while moves near the

 desired w-limit set. Then we improve matters by getting a subinterval of I

 whose orbit moves nearer the desired w-limit set for a longer while. In the

 limit, we obtain our desired point whose orbit does what we want.

 If we are trying to find a function with the desired w-limit set, why not try

 to get right to the heart of things - pick the orbit, or orbits, we want, and see

 if we can find a function in the desired class ( 6, JÛBi*, JÛBi, etc.) that has

 points with these orbits. This approach has been used with some success in
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 lABCP]. One finds a condition on a sequence S = (xnÇ that guarantees the

 existence of a function ft C such that /(xn) = xft+i for all n = 0. 1,2

 condition was then used to prove parts of the theorem that asserts that each

 nonempty, nowhere-dense closed set M is an w-limit set for some /6 C.

 For the family JÛBj we already know that every nonempty closed set K c I

 is in A (f) for some f e JDBj. We wish to address the question: "What families

 'K are contained in A(() for some f e iDBj?" The specifying of orbits has

 proved useful in attacking the problem when X is countable. The basic tool

 is the theorm below.

 Theorem: Let D be a denumerable subset of I, and Jet f: D->D. For c> 0, let

 De - (x e D: ose (f,x) ¿ el If the closure of De Is denumerable for every

 e > 0, then / can be extended to a function Fe ¿Wt on I .

 The theorem is used in the following way. One wishes to find f e JDBi that

 has each of the sets Ki, IC2, ... as w-limit sets. One tries to find sequences
 1 2

 Si - (xk), S2 - (xk), ... such that for each n - 1. 2, 3, ... Sn has Kn as cluster set,

 00 00

 and such that the function f defined on U U (x£) by /(i£) - satisfies
 n-l k-0

 the condition of the theorem.

 For example, if (ÌKn * 0, say b e DKn , one can construct sequences Sn that

 meet the condition rather easily. The point b serves as a distribution' point

 for all the sets Kn. Replacing one "distribution" point by two, however,
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 causes the result to fail. For example, the collection Wj of two-point sets

 (0, r}, r rational, is in Mf') for some fteJDBi. Similarly, the collection

 ^(.r, 1} is contained in A(fa) for some But the collection

 isn't: if K|uK2CA(/) for some /, then / must be discontinuous everywhere.

 Keller [K] has obtained a number of conditions that imply that a countable

 family 'K is contained in A (f) for some /643® i . But a characterization of

 such families has not yet been obtained.

 We end by mentioning that the theorem in this section can be extended to

 sets D that are nondenumerable. In general, one can then conclude only

 that the extended function F is a Baire 1 function. If, however, the closure

 of D has measure zero, F can be chosen to be approximately continuous.

 Thus, the methods of this section sometimes can be applied to deal with

 uncountably many specified orbits. As an illustration, consider the set S in

 section 3 A. Each X e S has the representation x = .IOA1IOIOA2IOIOA3IO... .

 We can define orbits for all x e S by defining /(x) = .IOA2IOIOA3IO... . The

 resulting function maps S onto S and is continuous on S. Since

 S u(kíi[1 , ļ]), the closure of S, has measure zero, / can be extended to an

 appoximately continuous F on I. The function F has each nonempty closed

 subset of Kn[ļ , ļ] as an «-limit set. Observe that / is simply the first-

 return map of the function q that we discussed in section 3A.
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