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 Some interpolation problems in real and harmonic analysis1

 by A. Olevskii

 Suppose we have any function space F and a subspace G of "good" functions. For
 arbitrary f«F , we wish to find g e G which coincides with/on some set E. This is

 an interpolation problem. It is necessary to distinguish between two variants of the

 problem.

 In the first case, interpolation with fixed knots, a set E (not necessarily finite) is given

 a priori. If the problem is resolvable for every fs F we say E is an interpolating set for

 the pair ( F , G).

 In the second case, E is not given and it can be chosen, depending on/, in such a way

 that it may be "thick" in a metric sense or in cardinality. This is free interpolation. An

 elementary example of the first problem is polynomial interpolation by the Lagrange or

 Newton method. Another and deeper example is given in the famous Rudin-Carleson

 theorem on the disc-algebra of functions.

 An important example of the second type of problem is the famous Menshoff

 "correction" theorem in Fourier analysis. In what follows I will be concerned with some

 aspects of interpolation of continuous functions arising in classical and harmonic analysis

 and I will describe recent progress and some open questions.

 I. Interpolation bv smooth functions.

 Here we deal with the following problem: to what degree can one improve the

 smoothness of given function f: I = [0, 1] - > 91 by free interpolation on perfect (nonempty)
 sets.

 The history of this question begins with a curiosity. In the mid-thirties Ulam

 conjectured that for every f e C(I) one can define an analytic function g which coincides

 with/on a perfect set

 One might observe in favor of this conjecture that if/ is "bad", say nowhere

 differentiable, or it has no interval of monotonicity, then some level sets of/ are

 uncountable, so we can put g = const .

 ^ This is a summary of a talk given at the Fourteen Summer Symposium on Real
 Analysis at San Bernardino.
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 In his well-known monograph [19] Ulam stated that the conjecture was proved by

 Zahorskii [18] and then he discussed the possibility of high dimensional generalizations.

 But in reality, Zahorskii had given a negative answer: he had constructed a function

 f e C°°(I ) which has at every point x e I the radius of convergence of the Taylor series

 equal to zero. It is clear that this function gives a counterexample to Ulam's conjecture. It

 should be mentioned that the first example of such a function was constructed by H. Cartan

 [5].

 Nevertheless many years later the problem led to the new and interesting developments.

 The comprehensive article on this theme was published by Agronski, Bruckner,

 Laczkovich and Preiss [1], see also [2], [3], [12]. The following proposition is true.

 Theorem 1: Let f e C(I). Then :

 (i) [1] There exists a function (p e C~(I) which coincides with fon an infinite set of
 points.

 (ii) [12] There exists a perfect set Eel such that the restriction f I e is C°° relative to E.

 (iii) [1] There exists a function g e C^I) such that the set {x: f(x) = g(x)} is
 uncountable.

 The last assertion follows from (ii) and Whitney's extension theorem.

 The authors mentioned ([1], p. 660, [2]) that the problem of extension of (iii) to

 ge (?(!) , or g e C°°(I) , remains unsolved. Recently Buczolich obtained a theorem

 which seemingly came up close to the case g € C2 :

 Theorem 2 [4]. For every f € C(I) there exists a convex g, which interpolates f on

 some perfect set.

 Nevertheless the answer to the problem above is "NO". Free interpolation of a

 continuous function by a twice smooth function on a perfect set is, in general, impossible.

 We state this theorem in slightly stronger form. Let us say f e Ca (I), [oc] = k, a * k , if

 f e Ck(l) and/*'' belongs to the Holder space H^fl) . The following proposition is true.
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 Theorem 3. There exists a Lipshitz function f: I - » SR such that for every

 g e Ca(I), a > 1 y the set {x: f(x) = g(x)} is countable ( with only a finite set of

 accumulation points).

 We can give an explicit formula for/. Let r(x) equal 1 for 0 < x < 7/2, equal -1 for

 112 <x< 1 and be periodically extended on 91. Then for small enough q e (0,1) and

 rapidly increasing integers {vn} the function

 foo = i X qn r (vnt)dt (1) JoÍn

 satisfies the statement of Theorem 3.

 Remarks.

 R.l. One can show that the / just defined possesses the following property: for

 every perfect E c / the second divided difference û)/is unbounded on any (nonempty)

 portion of E. So (Ojf does not preserve the sign on E. This gives an answer to another

 problem from [1] (p. 677).

 R.2. It is well known that Rademacher series and lacunary trigonometric series often

 have the same behavior in many problems and they are used equally in the construction of

 various counterexamples. But if we replace the Rademacher functions in (1) by harmonics

 cos vnt then /will allow the interpolation by a twice smooth function on perfect set.
 This follows from the theorem below.

 We see from Theorem 3 that when an order of smoothness of given function/

 increases from zero to one the possibility of "improvement of smoothness" by free

 interpolation on perfect sets vanishes. Even if / is "almost C1" we can't jump over the

 value 1 in the scale of smoothness. It is clear (by repeated integration) that the same effect

 appears near every integral order.

 Let now f e C1 (I) . Can one improve the smoothness? The answer is "yes".

 Theorem 4. For every f e C!(I) there exists a function g e C2® such that f = g on

 some perfect set Eel.

 From the previous it follows that this is the best possible.
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 Now let us move further on scale of smoothness on f e C2 (I) . We might expect to

 improve its smoothness one order. But at this point the last new effect is waiting for us.

 Theorem 5. There exists f e C2® such that for each g e C3(I), or even g e C2+e(I),
 the set {f = g} is countable.

 Of course the same holds for f e C , k > 2 : in general this function allows the free

 interpolation by g e only on countable sets.

 It's worth mentioning that in theorems 3 and 5 we run into "exceptional" effects. A

 typical (in the Baire category sense) function has a more respectable behaviour:

 Theorem 6. For every k, a typical function f from space &(ļ) can be interpolated on

 suitable perfect set by g e C°°(I).

 Two remarks at the end of this part.

 R.3. In [1] the authors showed that if a graph /has only finite intersection with

 graph each polynomial, then it has arbitrary high smoothness on some subintervals. They

 asked if it is true that if it has finite intersection with every analytic function on I, then /is

 C°° on some subinterval. A counter-example was constructed by Fjodoroff [6] who used

 some perturbation of the Cartan-Zahorskii example. Let/; be a C°°function with radius

 of convergence of its Taylor series equal to zero at every point. Further

 where

 í 0, X ś 0

 e(x) = U*>o.

 Then g =f¡ +f2 has a finite intersection with every analytic g and it is not C°°on any
 interval.
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 R.4. In all the above presentation we described "thickness" of the interpolation set

 only in power terms. It is natural because metrical conditions even in the most weak sense

 could not be required: Typical/" e C(I) may coincide with g e C1 (I) only on a set of

 Hausdorff measure zero (relative to any given generating function h ) [6, 7].

 As distinct from this, in what follows the metrical approach plays the main role.

 II. Interpolation in Fourier analysis.

 We are going to interpolate any continuous function/on the circle T = 9Ì/2n by

 functions with "well behaved" Fourier expansion

 f=]£f(n)eint (2)
 neZ

 This good behaviour we indicate by belonging to important spaces U(T) and A(T). For

 more details on this topic see {16, 17}.

 II. 1 . U(T) is the Banach space of functions g which are expandable in uniforrmly

 convergent series (2) with norm

 Il f II v = sup II SN(g) II C(T), SN = ^ gWe"11 ßN
 lnl<N

 The problem of free interpolation leads to the following.

 Menshoff "correction" theorem". For every f e C(T) and every e > 0 there exists

 g e U(T) such that mes {t: f(t) * g(t)} < e.

 The proof is constructive; you can see the simple version of the proof, for example, in

 [16]. Unexpectedly, investigation of interpolating compacta for pairs (C, U) turned out to

 be an essentially a more difficult problem. It is well known that such a compactum is

 necessarily of measure zero. The converse assertion was proposed in [14] (p. 89) and it

 was proved by Oberlin [13].
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 Theorem fi 31. Let E e T is a compaction of measure zero and f e C(E). Than it can
 be extended on the circle as element o/U(T).

 It may seem shocking at first glance that the proof is based on very powerful tool - the

 famous Carleson theorem on convergence a.e. of L - Fourier series. It is unknown if one

 can avoid this and give a constructive proof. Detailed investigation of relations between

 these two theorems seems to be an interesting problem. It should be mentioned that the

 two dimensional analogue of Oberlin's theorem for spherical partial sums is unknown. In

 this case Carleson's theorem is also an open problem.

 The topics above allow some discrete analogues, related to the characters of the cyclic

 group:

 {e^1, t e TN = I 2kĶ K = 0, 1, ..., N - l|

 This is an orthonormal system relative to invariant normalized measure on 7V Each

 function/on Tn has the expansion

 N-l

 f(t) = 5/^, f(k) = ^Xf(t)e_int.
 n=0 teTj^

 Analogous with (3) one can introduce the norm in U(TN). The following is the typical

 example of problem arising here: at how many (asymptotically by N) "knots" e 7^ can

 one fix a function/, defined in these points, /// <7, to allow the extension on Tn with

 UN - norm bounded by an absolute constant? And what is an optimal way to arrange these

 knots? I have stated also the question about discrete analogues of Menshoff theorem. The

 proof is given by Kashin in [10].

 n.2. Here as the space of "good" functions we consider the Wiener algebra A(T) of

 absolute convergent series (2) with norm

 M=Xlf<k>l.
 KeN

 It is a remarkable object of Fourier analysis, for its investigation combines analytical,

 metrical, probabilistic, and even number theoretical methods, see [9].
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 To demonstrate some effects arising in the interpolation problem let us consider the

 simplest situation. Let E = {tkf¡ be a finite set on the circle and we wish to extend any

 function fl £, If/ <1, to the circle with II f IIa(T) bounded by a constant not depending on

 N. Is it possible? The answer depends essentially on the arithmetical nature of E. If the

 numbers {tk} are rationally independent, the answer is "yes". In this case, vectors
 - ^

 = ntk(mod2 it),k = l,2, are dense on the torus TN and exponents e1"1 with
 appropiate frequency give the required extension with arbitrary closeness.

 On the other hand, if tk are arranged in arithmetical progression the answer is "no".

 The norm of the optimal interpolating function in general has in this case the order VÑ .

 This explains that not every compact set of Lebesgue measure zero, even countable, is an

 interpolating set for the pair (C(T), A(T )) (such sets called by Helson sets). Meanwhile

 we known from Wik and Kaufman that a Helson set may be massive from the metrical

 point of view: it may have Hausdorff dimension equal 1. A clear description of Helson set
 is not available.

 For a long time the problem of free interpolation by functions belonging A(T) has

 remained open. Is the analogue of Menshoff s theorem true? The answer "no" was

 obtained in essentially different ways by Katznelson [11] and by Olevskii [15]. Our

 approach has, at the same time yielded "incorrectable" functions with maximal possible
 smoothness:

 Theorem fl51. There exists a function f belonging to Holder space H1/2 (T) such that

 for every g e A(T), mes{t: f(t) = g(t)> = 0.

 I recall that if f e Hll2+e , then it belongs to A(T) without any corrections
 (S. Bernstein).

 The approach in [15] is based on metrical considerations. Roughly speaking, we have
 7/2

 shown that majority of continuous, and even H , functions /are incorrectable. This

 aspect was developed by Hruscev, Kahane and Katznelson [8]. They proved that the

 trajectories of the Brownian movement are incorrectable almost surely.
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