Real Analysis Exchange Vol 16 (1990-91)

Roy A. Johnson, Department of Mathematics, Washington State University, Pullman, WA 99164-2930

A MINIMAL FAMILY OF OPEN INTERVALS GENERATING THE BOREL SETS

Let \mathcal{F} be the family of all open intervals of R, and let \mathcal{B}_R denote the Borel sets of R. The following two statements appear in [2, p. 19]:

"A subfamily $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for \mathcal{B}_R iff the set of end points of intervals in \mathcal{F}_0 is dense in R. Thus if $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for \mathcal{B}_R then by removing any finitely many intervals from \mathcal{F}_0 we still get a generator for \mathcal{B}_R ."

Małgorzata Filipczak [1] has shown that the first statement is false. We show that the second statement is also false by making use of the fact that if a σ -algebra separates points, then so does a generator for that σ -algebra [1, Lemma 1]. Since R is homeomorphic to the open interval (0, 1) and since homeomorphism preserves open intervals¹, it suffices to give examples in (0, 1). More precisely, we find a minimal family \mathcal{E} of open intervals in (0, 1) such that $\mathcal{B}_{(0,1)}$ is the smallest σ -algebra containing \mathcal{E} .

Example 1. For each positive integer n, let

$$\mathcal{E}_n = \{((k-1) \cdot 2^{-n}, k \cdot 2^{-n}) : k = 1 \dots 2^n\},\$$

and let $\mathcal{E} = \bigcup \mathcal{E}_n$. The open intervals in \mathcal{E}_1 will be called members of the first level, those in \mathcal{E}_2 members of the second level, etc.

¹In this paper an open interval is an interval that happens to be an open set. Example 2 is given for those who want open intervals to have compact closure.

The σ -algebra S generated by \mathcal{E} is contained in $\mathcal{B}_{(0,1)}$. We check that $\mathcal{B}_{(0,1)} \subset S$. Let

$$A = \{k \cdot 2^{-n} : k \text{ and } n \text{ are positive integers and } k < 2^n\},\$$

and suppose $x \in A$, where $x = (2l-1) \cdot 2^{-n}$ in reduced form. If $n \ge 2$, then

$$\{x\} = ((l-1) \cdot 2^{-n+1}, l \cdot 2^{-n+1}) \setminus [((2l-2) \cdot 2^{-n}, (2l-1) \cdot 2^{-n}) \cup ((2l-1) \cdot 2^{-n}, 2l \cdot 2^{-n})]$$

But if n = 1 (so that $x = 2^{-1}$), then

$${x} = (0,1) \setminus [(0,2^{-1}) \cup (2^{-1},1)].$$

Hence, every subset of A belongs to S. If U is any open set in (0,1), then U can be expressed as the union of all $E \in \mathcal{E}$ contained in U along with some subset of A. Hence, \mathcal{E} generates $\mathcal{B}_{(0,1)}$.

Since $\mathcal{B}_{(0,1)}$ separates points in (0,1), so must any generator. Let us check that if some member of \mathcal{E} is removed, then the resulting family no longer separates each pair of points in (0,1). Suppose $E = ((k-1) \cdot 2^{-n}, k \cdot 2^{-n})$, where $k \in \{1,\ldots,2^n\}$. Let xbe the left endpoint $(k-1) \cdot 2^{-n}$ if k is even, and let x be the right endpoint $k \cdot 2^{-n}$ if k is odd. Clearly E separates its midpoint $y = (2k-1) \cdot 2^{-n-1}$ from x. Neither x nor y belongs to any other member of \mathcal{E}_n . If m > n, then neither x nor y belongs to any member of \mathcal{E}_m . Notice that x is not an endpoint for any previous level. Thus if m < n, then any member of \mathcal{E}_m which contains one of x or y must contain both. Hence, \mathcal{E} is a minimal generator for $\mathcal{B}_{(0,1)}$.

Example 2. An easy modification of Example 1 yields a minimal generating family of open intervals having compact closure. For the family \mathcal{E} of Example 1, remove all open intervals whose closure is not compact. Then, for $n \geq 3$, replace the intervals $(2 \cdot 2^{-n}, 3 \cdot 2^{-n})$ and $(1 - 3 \cdot 2^{-n}, 1 - 2 \cdot 2^{-n})$ by $(2^{-n}, 3 \cdot 2^{-n})$ and $(1 - 3 \cdot 2^{-n}, 1 - 2^{-n})$, respectively, to get a new family \mathcal{D} of open intervals with compact closure. Once again, let us show that if $x \in A$ then $\{x\}$ is in the σ -algebra \mathcal{S} generated by \mathcal{D} . If $x = (2l-1) \cdot 2^{-n}$ in reduced form and if l is neither 1 nor 2^{n-1} , then

$$\{x\} = ((l-1) \cdot 2^{-n+1}, l \cdot 2^{-n+1}) \setminus [((2l-2) \cdot 2^{-n}, (2l-1) \cdot 2^{-n}) \cup ((2l-1) \cdot 2^{-n}, 2l \cdot 2^{-n})].$$

We now consider the case when l is 1 or 2^{n-1} , so that x has the form 2^{-n} or $1 - 2^{-n}$ for some n. For each n, we have

$$(0,2^{-n}) = (2^{-n-1},2^{-n}) \cup \bigcup_{m \ge n+2} (2^{-m},3 \cdot 2^{-m}),$$

so that $(0, 2^{-n}) \in S$. Similarly, each $(1 - 2^{-n}, 1) \in S$. Evidently, $\{1/2\} \in S$ since $\{1/2\} = (0, 1) \setminus [(0, 1/2) \cup (1/2, 1)]$. If $n \ge 2$, then $\{2^{-n}\} = (0, 2^{-n+1}) \setminus [(0, 2^{-n}) \cup (2^{-n}, 2^{-n+1})]$, so that $\{2^{-n}\} \in S$. Similarly, $\{1 - 2^{-n}\} \in S$. Thus every subset of A lies in S and every open set lies in S by the same reasoning as in Example 1.

It remains to show that each member of \mathcal{D} is needed to separate points in (0, 1). It is clear that only (1/4, 1/2) separates 3/8 and 1/2 since neither of these points belongs to any other member of \mathcal{D} . Similarly, only (1/2, 3/4) separates 5/8 and 1/2. Now suppose $D \in \mathcal{D} \setminus \{(1/4, 1/2), (1/2, 3/4)\}$. Then there is an integer $n \geq 3$ such that D is either in \mathcal{E}_n or replaces a member of \mathcal{E}_n . The following assertions are easily checked: If $D = (2^{-n}, 2 \cdot 2^{-n})$, then only D separates $3 \cdot 2^{-n-1}$ and $2 \cdot 2^{-n}$. If $D = (1 - 2 \cdot 2^{-n}, 1 - 2^{-n})$, then only D separates $1 - 3 \cdot 2^{-n-1}$ and $1 - 2 \cdot 2^{-n}$. If $D = (2^{-n}, 3 \cdot 2^{-n})$, then only D separates $5 \cdot 2^{-n-1}$ and $3 \cdot 2^{-n}$. If $D = (1 - 3 \cdot 2^{-n}, 1 - 2^{-n})$, then only D separates $1 - 5 \cdot 2^{-n-1}$ and $1 - 3 \cdot 2^{-n}$. Finally, if $D = ((k-1) \cdot 2^{-n}, k \cdot 2^{-n})$, where $4 \leq k \leq 2^n - 3$, then let x be either the left endpoint $(k - 1) \cdot 2^{-n}$ if k is even or the right endpoint $k \cdot 2^{-n}$ if k is odd. Only D separates its midpoint $(2k-1) \cdot 2^{-n-1}$ and x. Hence, \mathcal{D} is a family of open intervals with compact closure which is a minimal generating family for the Borel sets of (0, 1). **Remark.** Let $\epsilon > 0$. Under the homeomorphism $f_{\epsilon} : (0,1) \to R$ given by

$$f_{\epsilon}(x) = \begin{cases} \epsilon \log_2(2x) & \text{if } 0 < x \le 1/2 \\ -\epsilon \log_2(2-2x) & \text{if } 1/2 < x < 1, \end{cases}$$

the minimal generating family of open sets \mathcal{D} in Example 2 is mapped onto a minimal generating family of open sets $f(\mathcal{D})$ for which each member of $f(\mathcal{D})$ has length less than 2ϵ . Hence, a minimal generating family of open sets for \mathcal{B}_R can have mesh as small as we please.

References

- M. Filipczak, On generators for Borel sets, Real Analysis Exchange, 13 (1987–88), 194–203.
- [2] K. P. S. Bhaskara Rao and B. V. Rao, *Borel spaces*, Dissertationes Mathematicae, 190 (1981), 1-63.

Received June 15, 1990