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 0. Introduction

 The purpose of this note is to show how a monotonicity theorem established

 recently by Freiling and Rinne in [FR] can be used to define a symmetric

 approximate Perron integral which solves the coefficient problem of the

 convergent trigonometric series, and to raise some questions that are

 interesting for further investigations.

 One of the problems in the theory of trigonometric series is that of

 suitably defining an integral which is general enough to integrate the sum of

 any everywhere convergent series of the form

 OD

 î a0 + X (ancosnx + bflsinnx) (1)
 n=l

 and to ° give back the coefficients a , b in terms of the sum function. This is ° n' , n

 the so-called coefficient problem for convergent trigonometric series. The

 problem seems to be first considered and solved by Denjoy in [D] . It has also

 been solved later by Marcinkiewicz and Zygmund [MZ] , James [J] (cf. also [Z] ,
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 vol II, pp. 86-91), and Burkiii [BJ] (cf. also [BH] ) .

 It is well-known that a series like (1) can converge everywhere to a

 function f which is not Lebesgue or even Denjoy integrable on an interval. If

 f were integrable, one should like to say that the series

 ŪD

 2 a0x + X n (ansinnx * bncosnx) (2)
 n=l

 obtained by formally integrating (1) term by term, in some sense represents the

 indefinite integral of f. However, the series (2) converges, in general, only

 almost everywhere so that its sum function is not nice enough to be an

 "ordinary" indefinite integral.

 Two distinct methods of attacking this difficulty have been developed,

 (i) Define an integral in such a way that its indefinite integral need exist

 only at points of a set of full measure in the interval of integration. The

 (T)- integral of [MZ] and the SCP- integral of [BJ] are of this type, (ii)

 Define a second order integral so that the indefinite integral is nice and

 recaptures the second primitive instead of the first one. Denjoy's

 totalization of second symmetric derivatives (to be denoted as Tg ' g- integral in
 2 '

 our discussion) and James' P -integral are of this type. The reason for this

 to work is that the series

 QO

 Ì V2 " X~^2~ (ancosnx + bnsinnx) (3)

 obtained by formally integrating series (1) twice, converges everywhere to a

 nice function.
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 Representations of the coefficients afl, by using the second order
 o

 T2 g- integral and P - integral are not in the exact ordinary Euler- Fourier forms

 since the definite integrals involve the second differences of the second

 primitives. Vhen the first order (T)- and (SCP)- integrals are used, the exact

 Euler- Fourier forms are obtained. But in proving the Euler- Fourier formulas,

 one still has to appeal to the properties of the function defined by the twice

 integrated series (3) . How to avoid this is what we would like to show in this

 note.

 In section 2, a symmetric approximate Perron integral, or simply a

 SAP- integral, is defined. Essentially, the SAP- integral is a process which

 recaptures from a symmetric approximate derivative its primitive almost

 everywhere up to a constant. This is possible according to a recent

 monotonicity theorem due to Freiling and Rinne. Their result will be stated

 and slightly improved in section 1. The application of the SAP- integral to the

 coefficient problem is discussed in section 3. Certain questions will be

 raised in section 4.

 Throughout the note, the Lebesgue measure of a set S is denoted by |S|;

 the lower symmetric approximate derivate of F at x is denoted by ¿D F(x) and
 Sap

 its upper one by uD F(x). Then, of course, D S F(x) means the symmetric S cip S cip

 approximate derivative.

 1. A Fondamental Lenna.

 For the development of the SAP- integral in the next section, the following

 monotonicity result is essential.

 Fundamental Lemma. Let f be a measurable function which is finite almost

 everywhere on an interval I, and let A(f) denote the set of all the points in I
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 at which the function f is approximatly continuous. Then |I'A(f)| = 0.

 Furthermore, if the lower symmetric approximate derivate, ¿D f, is
 Sap

 non- negative almost everywhere in I and is greater than -od everywhere in I,

 then f is non- decreasing on A(f).

 It is well-known that |I'A(f)| = 0. (For example, see page 132 in Saks

 [S].) The monotonicity part in the lemma is just a slight improvement of the

 following result, which was established very recently by Freiling and Rinne in

 [»]•

 Theorem a. If a finite measurable function g has a non- negative lower

 symmetric approximate derivate on an interval, then g is non- decreasing on

 A(g), the set of all the points at which g is approximately continuous.

 Vith theorem A, the monotonicity part of the fundamental lemma is easily

 proved as follows.

 First, note that as f is finite almost everywhere, we may assume without

 loss of generality that f is finite everywhere. Next, let us denote E = {x:

 xel and (x)<0}. Then since I E I = 0, there exists a Gr- set S such that
 Sctp O

 I S I =0 and S D E. Then by a result of Zahorski in [Za], there exists an

 absolutely continuous function h such that h'(x) exists everywhere, h'(x) = +<d

 for x e S and 0 < h'(x) < +œ for x i S. Now, for each e > 0, let gf =

 f + eh. Ve see that gf satisfies all the conditions in theorem A, and hence gf

 is non- decreasing on the set A(gf). As A(f) = A(gf) for each e > 0, we

 conclude that f is non- decreasing on A(f).

 2. The SAP- integral.

 Let f be a function which is finite almost everywhere on the bounded closed

 interval [a,b] , and let B be a measurable subset of [a,b] with
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 a,b e B and |B| = b - a. A function 1 is called a symmetric approximate

 Perron , or simply SAP-, major function of f on [a,b] with basis B if

 (i) M is measurable on [a,b] and approximately continuous on B;

 (ii) ^D00_M(x) > f(x) for almost all x in [a,b] ;
 Sap

 (iii) ¿D M(x) > -od for all x in [a,b] ; Sap

 (iv) M(a) = 0.

 A function m is called an SAP- minor function of f on [a,b] with basis B if

 -m is an SAP- maj or function of -f on [a,b] with basis B.

 From the definition and the fundamental lemma in the previous section we

 get the following basic result.

 Lemma 1. If H is an SAP- maj or function and m an SAP- minor function of f on

 [a,b] with basis B, then M-m is nondecreasing on B, and in particular

 M(b) - m(b) > M(a) - m(a) = 0.

 Of course, M-m here may not be defined on the set [a,b]'B. This is

 immaterial since [a,b]'B is of measure zero.

 A function f is said to be symmetric approximate Perron, or simply SAP- ,

 integrable on [a,b] with basis B if

 inf M(b) = sup m(b) i ±œ

 where M runs over all SAP- maj or and m over all SAP- minor functions of f on

 [a,b] with basis B. The number in the above equality is called the

 SAP -integral of f on [a,b] with basis B, and will be denoted as

 fb
 (SAP,B) f(x)dx.

 21

 Based on lemma 1, many properties of the SAP- integral can be established.

 However, we will not do it here. Ve only mention the following one, which is

 needed in the next section.

 333



 Theorem 1. Let F be a measurable function finite almost everywhere, and

 suppose that -œ < ¿D F(x) < u D _F(x) < +œ for ail x, and D F(x) = f(x)
 s cip sap sap

 exists for almost all x. Then, denoting by A(F) the set of all the points at

 which F is approximately continuous, the function f is SAP- integrable on [a,b]

 with basis A(F)n[a,b] for all a,b e A(F) with a < b, and

 rb
 (SAP, A(F)n[a,b] ) f(x)dx = F(b) - F(a).

 ä

 Proof . By the first part of the fundamental lemma, the complement of A(F) is

 of measure zero. Then the function F - F (a) serves both as an SAP- maj or and an

 SAP-minor function of f on [a,b] with basis A(F) n [a,b], and hence the theorem

 is proved.

 3. Application to Trigonometric Series.

 Theorem 2. Suppose that the series

 00

 5 a0 + X (ancosnx + bnsinnx) (1)
 n=l

 converges to a finite f(x) for every x. Then there exists a 2x- periodic set B

 whose complement is of measure zero such that for each u € B the functions

 f(x), f(x)cosnx and f(x)sinnx are SAP- integrable on [u, u+2r] with basis

 Bu = Bn[u,u+2x], and furthermore we have the following Euler- Fourier formulas:

 i-u+2T

 x a = (SAP, B ) f(x)cosnx dx for n=0, 1, 2, 3, •••,
 Ju
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 rU+2x

 xbn = (SAP, Bu) f(x)sinnx dx for n = 1, 2, 3, ••• .
 Ju

 Proof. It follows exactly the same line as that given in [BH] for the

 (SCP)- integral except that we don't have to use the series (3) obtained by

 integrating (1) twice. Instead, we use a theorem due to Eajchman and Zygmund

 in 1926 (cf. [Z], page 324), which says that if afl, bR -♦ 0 as n -» m, and if the

 series (1) converges at Xq to a finite í(xq), then the series

 OD

 2 a0x + X S (an sinnx " bn cosnx)
 n=l

 converges almost everywhere to a function F(x) such that ®sapf(xo) = ^(xo)*
 proceed as follows. Since the series (1) converges in a set of positive

 measure, afl, bfl -» 0 as n -+ œ. Then, by the theorem of Eiesz and Fischer (cf.

 [Z], p. 127), the periodic part of the series (2) is the Fourier series of a
 o

 locally L -function G(x). Then by the theorem of Lebesgue (cf. [Z], p. 90),

 the Fourier series of G(x) is (C,l)- summable to G(x) for almost all x. Then

 the theorem of Hardy (cf. [Z], p. 78) implies that the Fourier series of G(x)

 does converge to G(x) for almost all x. Thus the series (2) does converge to
 1 2

 F(x) = G(x) + £ &qX for almost all x. (As G is locally L , so is F.) Now, by

 the theorem of Rajchman and Zygmund mentioned above, we have D F(x) = f(x)
 S cip

 for all x. Then an application of theorem 1 in the last section shows that,

 taking B = A(F), f is SAP- integrable on [u, u + 2r] with basis Bu and also the

 Euler- Fourier formula for aQ is obtained. The conclusion for f(x)cosnx and

 f(x) sinnx and the other Euler- Fourier formulas can be proved in a similar

 manner as that in [BH] by using the theory of formal multiplication of
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 trigonometrie series, and is omitted here.

 Ve remark that in the above proof the almost everywhere convergence to G

 of the Fourier series of G can be shortened if one uses the deep theorem of
 o

 Carleson, which claims that the Fourier series of a (locally) L -function

 converges almost everywhere.

 4. Remarks and Questions.

 (A) As mentioned in the proof of theorem 2, the theory of formal

 multiplication of trigonometric series is needed. However, if one can obtain a

 reasonable integration by parts formula for the SAP- integral of the form

 [ f(x)G(x)dx = [F(x)G(x)]|ļ> - [ F(x)g(x)dx
 Ja Ja

 (where F is a "SAP- primitive" of f, and G is an ordinary primitive of g, and g

 can be as nice as is needed but including functions like sinnx and cosnx), then

 theorem 2 can be proved without using the formal multiplication of

 trigonometric series. The main difficulty to obtain such an integration by

 parts formula seems to lie on the fact that we don't know how to find the

 symmetric approximate derivative of the product of two symmetric approximate

 differentiable functions. Anybody is welcome to solve the following:

 Problem 1. Find sufficient conditions on F and G so that the formula

 (GF)'(x) = G'(x)F(x) + G(x)F'(x) holds. Here the derivative means the

 symmetric approximate derivative. [Of course, if both F and G are

 approximately continuous at x, then the equation holds trivially. Hence the
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 desired condition should exclude this case.] I think the problem is nontrivial

 even for the ordinary symmetric derivatives.

 (B) A set E is called a set of uniqueness, or U-set, if every trigonometric

 series like (1) converging to zero outside E vanishes identically. It is

 well-known that a U-set must be of measure zero but not every set of measure

 zero is a U-set. The quest of representing the coefficients of series (1) in

 terms of its sum function makes sense even if the series (1) is convergent only

 outside a U-set. This leads us to the following conjecture, which is stronger

 than the theorem by Freiling and Rinne quoted in section 1.

 Conjecture. If a measurable finite function has a non- negative lower symmetric

 approximate derivate everywhere except on a U-set, then the function is

 non- decreasing on the set of points at which the function is approximately

 continuous.

 It might be hard to attack this problem since no characterization of

 U-sets is known. Ilowever, it is known that every countable set is a U-set.

 Thus, one may want to try the case when the U-set is countable.

 Note that if the conjecture is true, then the SAP- integral can be modified

 in such a way that it solves the coefficient problem in the best possible way

 without using the series (3).

 (C) In solving the coefficient problem, only Denjoy's Tj g- integral is defined

 constructively. All the other integrals are of Perron type. To my knowledge,

 there are no constructive definitions for any of the integrals. The (T)- , P -

 and SCP- integrals all somehow involve the second symmetric derivative, so that

 a constructive definition for each of these may be as complicated as that of
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 Denjoy Tj g- integral. It might be easier to obtain a constructive definition

 for the SAP- integral , since it involves only the first order symmetric

 approximate derivative. As a first step we formulate the following

 generalization of the problem of how to construct an ordinary primitive.

 Problem 2. Knowing the symmetric approximate derivative of a continuous

 function, design a constructive process to recapture the continuous function up

 to a constant.

 (D) Thanks be given to G. Cross, who has pointed out to the author that Preisso

 and Thomson have done an extensive work on the approximate symmetric integral

 in [PT] . The SAP- integral is just their k- Perron integral. They have proved

 the fundamental lemma independently of the work in [FE] . Their work is given

 in a very general setting based essentially on the concept of the theory of

 Henstock- Kurzweil integral. Ve hope that our simple presentation here does

 serve some purposes for people who are interested mainly in integrals of Perron

 type.

 Added in proof. The conjecture as stated in remark (B) is false. [Let f

 denote the characteristic function of the open interval (a,b). Then f is

 measurable and has non- negative symmetric derivate everywhere except at b. But

 f is not nondecreasing on the set of points at which the function is

 approximately continuous.] However we think it might hold true if "measurable"

 is replaced by "Darboux."
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