Ernest Freund, str. Dragos-voda 2, Satu-Mare 3900, Rumania

S-NULL FUNCTIONS

1 Introduction

In this paper we consider the class of S-null functions, i.e. of those real functions which have symmetric variation equal to zero. We prove that any S-null function is constant on a co-countable set and belongs to the first class of Baire. The results of the paper extend some theorems on locally symmetric functions to the class of S-null functions.

Let $\delta: R \rightarrow(0, \infty)$ be a function. A collection $P=\left\{\left(\left[x_{i}-h_{i}, x_{i}+h_{i}\right], x_{i}\right):\right.$ $i=1,2, \ldots, n\}$ is called a symmetric δ-partition on R if $0<h_{i}<\delta\left(x_{i}\right)$ and $\left(x_{i}-h_{i}, x_{i}+h_{i}\right) \cap\left(x_{j}-h_{j}, x_{j}+h_{j}\right)=\emptyset, i \neq j$. The closed interval $[a, b]$ has a symmetric δ-partition if there exists a symmetric δ-partition P on R with $\bigcup_{i=1}^{n}\left[x_{i}-h_{i}, x_{i}+h_{i}\right]=[a, b]$.

Definition 1.1. Let $f: R \rightarrow R$ and $\delta: R \rightarrow(0, \infty)$ be real functions. Define the number $V(f, \delta)$ as follows: $V(f, \delta)=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}+h_{i}\right)-f\left(x_{i}-h_{i}\right)\right|:\right.$ $P=\left\{\left(\left[x_{i}-h_{i}, x_{i}+h_{i}\right], x_{i}\right) ; i=1,2, \ldots, n\right\}$ is a symmetric δ-partition on $\left.R\right\}$. The symmetric variation of f on R is defined by $V S(f)=\inf \{V(f, \delta) \mid \delta: R \rightarrow$ $(0, \infty)\}$.

A function $f: R \rightarrow R$ with $V S(f)=0$ is called an S-null function. The class of these functions is denoted by $V(S)$.

Definition 1.2. We call a function $f: R \rightarrow R$ locally symmetric if for each $x \in R$ there exists $\delta(x)>0$ with $f(x-h)=f(x+h)$ whenever $0<h<\delta(x)$.
I.Z. Ruzsa [1] proved the following theorem:

Theorem 1.3. If f is a locally symmetric function, then there exists $\alpha \in R$ for which the closure of the set $\{x \in R: f(x) \neq \alpha\}$ is countable.

Every locally symmetric function is an S-null function; therefore one can ask whether a similar theorem is valid for the class $V(S)$.

2 The class $V(S)$

To obtain the main result (some version of Theorem 1.3 for the class $V(S)$), we need a few lemmas.

Lemma 2.1 ([2]) Let $[a, b] \supset R$ and $\delta: R \rightarrow(0, \infty)$ be a function. Write $c=(a+b) / 2$. Then there exists a set $D \subset(c, b)$ such that the closure of the set $(c, b) \backslash D$ is countable and moreover the interval $[c-x, c+x]$ has at least one symmetric δ-partition for all $x \in\left(0, \frac{b-a}{2}\right)$ with $c+x \in D$.

From this lemma we immediately deduce the following:
Lemma 2.2 ([3]). Let $\delta: R \rightarrow(0, \infty)$ be a function. Then there exists a countable set N such that for all $x, y \in R \backslash N$ the closed interval $[x, y]$ has at least one symmetric δ-partition.

Theorem 2.3. Let $f: R \rightarrow R$ be an S-null function. Then there exists $\alpha \in R$ such that the set $\{x \in R: f(x) \neq \alpha\}$ is countable and moreover for each $\varepsilon>0$ the closure of the set $\{x \in R:|f(x)-\alpha|>\varepsilon\}$ is countable.

Proof. First we prove that f is constant on a co-countable set. To each n there corresponds a positive function $\delta_{n}: R \rightarrow(0, \infty)$ with $V\left(f, \delta_{n}\right)<\frac{1}{n}$. Lemma 2.2 implies that there is a countable set N_{n} such that for every $x, y \in R \backslash N_{n}$ the closed interval $[x, y]$ has a symmetric δ_{n}-partition. Put $N_{0}=\bigcup_{n=1}^{\infty} N_{n}$. Thus N_{0} is countable. Let $x, y \in R \backslash N_{0}$. Then for each n there exists at least one symmetric δ_{n}-partition of $[x, y], P_{n}=\left\{\left(\left[x_{i}-h_{i}, x_{i}+h_{i}\right], x_{i}\right): i=1,2, \ldots, k\right\}$. We have that $|f(x)-f(y)|=\left|\sum_{i=1}^{k} f\left(x_{i}+h_{i}\right)-f\left(x_{i}-h_{i}\right)\right| \leq V\left(f, \delta_{n}\right)<\frac{1}{n}$ for all n. Consequently $f(x)=f(y)$. Since $x, y \in R \backslash N_{0}$ were chosen arbitrary, it follows that f is equal to a constant (say α) on $R \backslash N_{0}$.

We prove now the second assertion. Suppose the contrary for some $\varepsilon>0$ the set $E_{c}=\{x \in R:|f(x)-\alpha|>\varepsilon\}$ is uncountable. Then the set of condensation points of E_{c} is nonempty. Let x_{0} belonging to it. Without loss of generality, we assume that $\left(x_{0}-1, x_{0}\right) \cap E_{c}$ is uncountable. It is easy to prove that the set $\{(x+y) / 2: x, y \in S\}$ is countable if S is. Thus with $S=\{x \in R: f(x) \neq \alpha\}$ we obtain that the set $\{(x+y) / 2: f(x), f(y) \neq \alpha\}$ is countable, and we may find a point $c<x_{0}-1$ not belonging to it. For $\varepsilon>0$ and $\delta: R \rightarrow(0, \infty)$ such that $V(f, \delta)<\varepsilon$ we use Lemma 2.1 with $a=2 c-x_{0}$ and $b=x_{0}$ to find a set D with the properties described there. Let $x \in\left(x_{0}-1, x_{0}\right), f(x) \neq \alpha$. We have $f(2 c-x)=\alpha$. If $x \in D$, then the interval $[2 c-x, x]$ has at least one symmetric δ-partition. Consequently $|f(x)-f(2 c-x)|=|f(x)-\alpha| \leq$ $\sum_{i=1}^{n}\left|f\left(x_{i}+h_{i}\right)-f\left(x_{i}-h_{i}\right)\right|<V(f, \delta)<\varepsilon$. Then $x \in\left(x_{0}-1, x_{0}\right)$ and $|f(x)-\alpha|>\varepsilon$
imply that x belongs to $\left(c, x_{0}\right) \backslash D$. From Lemma 2.1 it follows that $\left(x_{0}-1, x_{0}\right) \cap E_{\varepsilon}$ is countable. This contradiction shows that E_{ε} has no point of condensation. Consequently E_{ε} is countable for all $\varepsilon>0$. The proof is complete.

The following theorem generalizes the well-known theorem of Kostyrko, Neubrunn, Smital and Šalát stating that every locally symmetric function is of class Baire-one [4].

Theorem 2.4. Each S-null function is of class Baire-one.
Proof. If f is not Baire 1, then there must exist a perfect set P such that the restriction of f to P has no point of continuity. Let $x \in P \cap\{x \in R: f(x)=\alpha\}$. Then exists n_{0} such that $x \in E_{\frac{1}{n_{0}}}$: Consequently $P \subset \cup_{n_{0}=1}^{\infty} E_{\frac{1}{n_{0}}}$ and thus the set P is countable. This contradiction shows that f is of class Baire-one.

References

[1] J.Z. Ruzsa: Locally symmetric functions, Real Analysis Exchange 4 (197879), 84-86.
[2] B. Thomson: On full covering properties, Real Analysis Exchange 6 (198081), 77-93.
[3] D. Preiss, B. Thomson: A symmetric covering theorem, Real Analysis Exchange 14 (1988-89), 253-254.
[4] P. Kostyrko, T. Neubrunn, J. Smital, T. Šalát: On locally symmetric and symmetrically continuous functions, Real Analysis Exchange 6 (1980-81), 6776.

Receivad February 7, 1990

