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 S-NULL FUNCTIONS

 1 Introduction

 In this paper we consider the class of S-null functions, i.e. of those real
 functions which have symmetric variation equal to zero. We prove that any
 S-null function is constant on a co-countable set and belongs to the first class
 of Baire. The results of the paper extend some theorems on locally symmetric
 functions to the class of S-null functions.

 Let 6 : R -> (0, oo) be a function. A collection P = {([x,- - /i,-,x¿ + /i, •],£») :
 i = 1,2 ,...,n} is called a symmetric ¿-partition on R if 0 < hi < ¿(x¿) and
 (x,- - hi, X, + hi) D (xy - hj , Xj + hj) = 0, i ^ j. The closed interval [a, 6] has
 a symmetric ¿-partition if there exists a symmetric ¿-partition P on R with
 ur=i[x< - hi, Xi + hi] = [a, 6].

 Definition 1.1. Let / : R - * R and 6 : R - ► (0, oo) be real functions. Define
 the number V(f,6) as follows: V(f,6) = sup{£r=i |/(x,- + hi) - /(x,- - Ä,)| :
 P = {([x,- - hi, Xi + /ij],x,); i = 1,2, . . . ,n} is a symmetric ¿-partition on R}.
 The symmetric variation of / on R is defined by VS(f) = inf{V(/,¿)|¿ : R -*
 (0, <x>)}.

 A function f : R -> R with VS(f) = 0 is called an S-null function. The class
 of these functions is denoted by V (5).

 Definition 1.2. We call a function / : R - ► R locally symmetric if for each
 x G R there exists ¿(x) >0 with f(x - h) = f(x + h) whenever 0 < h < ¿(x).

 I. Z. Ruzsa [l] proved the following theorem:

 Theorem 1.3. If / is a locally symmetric function, then there exists a G R
 for which the closure of the set {x G R : f(x) ^ a} is countable.

 Every locally symmetric function is an S-null function; therefore one can ask
 whether a similar theorem is valid for the class V(S).
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 2 The class V (S)
 To obtain the main result (some version of Theorem 1.3 for the class V"(5)),

 we need a few lemmas.

 Lemma 2.1 ([2]) Let [a, 6] D R and ¿ : R - ► (0, oo) be a function. Write
 c = (a + b) /2. Then there exists a set D C (c,6) such that the closure of the
 set ( c,b)'D is countable and moreover the interval [c - x,c + x] has at least one

 symmetric ¿-partition for all x G (o, with c + x G D.
 From this lemma we immediately deauce the following:

 Lemma 2.2 ([3]). Let 6 : R - ► (0, oo) be a function. Then there exists a
 countable set N such that for all x, y € R'N the closed interval [x, y] has at least
 one symmetric ¿-partition.

 Theorem 2.3. Let / : R - ► R be an S-null function. Then there exists
 a € R such that the set {x € R : f(x) ± a} is countable and moreover for each
 e > 0 the closure of the set {x € R : |/(x) - a| > e} is countable.

 Proof. First we prove that / is constant on a co-countable set. To each n
 there corresponds a positive function 6n: R -> (0, oo) with V(f,6n) < £. Lemma
 2.2 implies that there is a countable set Nn such that for every x, y € R'Nn the
 closed interval [x, y] has a symmetric ¿„-partition. Put N0 = U^Li Nn. Thus
 No is countable. Let x,y 6 R'Nq. Then for each n there exists at least one
 symmetric ¿„-partition of [x, y], Pn = {([x, - hi, x, + /ł,], x,) : t' = 1, 2, . . . , k}. We
 have that |/(x) - /(y)| = | ¿J=l /(x,- + ¿) - /(x,- - hi)' < V(/,¿„) < J for all n.
 Consequently /(x) = /(y). Since x,y € R'No were chosen arbitrary, it follows
 that / is equal to a constant (say a) on R'No.

 We prove now the second assertion. Suppose the contrary for some e > 0 the
 set Et = {x € R : |/(x) - a| > e} is uncountable. Then the set of condensation
 points of Et is nonempty. Let xo belonging to it. Without loss of generality, we
 assume that (xo - l,xo) fl Et is uncountable. It is easy to prove that the set
 {(x + y)/2 : x,y € 5} is countable if S is. Thus with S = {x G R : /(x) ^ a}
 we obtain that the set {(x + y) /2 : /(x),/(y) / a} is countable, and we may
 find a point c < x0 - 1 not belonging to it. For e > 0 and ¿ : R - ► (0, oo)
 such that V(/, ¿) < e we use Lemma 2.1 with a = 2c - xo and b = xo to find
 a set D with the properties described there. Let x 6 (xo - l,xo), /(x) ^ a.
 We have /(2c - x) = a. If x € D, then the interval [2c - x,x] has at least
 one symmetric ¿-partition. Consequently |/(x) - /(2c - x)| = 'f(x) - a' <
 EU 'f(xi+hi)-f{xi-hi)' < V(f,6 ) < e. Thenx 6 (xo-l,x0) and |/(x)-a| > e
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 imply that x belongs to (c, x0)'D. From Lemma 2.1 it follows that (x0 - 1, Xo)(~iEe
 is countable. This contradiction shows that Et has no point of condensation.
 Consequently Ee is countable for all e > 0. The proof is complete.

 The following theorem generalizes the well-known theorem of Kostyrko,
 Neubrunn, Smital and Šalát stating that every locally symmetric function is
 of class Baire-one [4].

 Theorem 2.4. Each S-null function is of class Baire-one.

 Proof. If / is not Baire 1, then there must exist a perfect set P such that the
 restriction of f to P has no point of continuity. Let x 6 P d {x G R : f(x) = a}.
 Then exists no such that x G Ej_. Consequently P C U£°=i ° E_i_ and thus the n0 ' ° n0
 set P is countable. This contradiction shows that / is of class Baire-one.
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