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PATH DIFFERENTIATION
IN BOREL THE SETTING

number of generalized derivatives was introduced by Bruckner,
O’Malley and Thomson in [2]. Namely, a set E(xDcR (the real
line with the usual topology) is a path at xeR if x is a limit
point of E(x). A system of paths E, is a collection { Ex) :
x€R > (or it can be considered as a multifunction E:x-+E(x)),
where each EX) is a path at x. If f:R+R is a function, then
the extreme E-derivatives of f at a point x are defined as
follows

fGO-fCy) and £¢x> m 1im inf L1
x-y ~E - xX-y

=1
fE(x) - l_i.r’t(\ sup 1inm
YEE(X)

€E(X)
bl | |

I fE(x) - gE(x), their common value is called the E-deriv-

ative of f at x (£ GO

Many results concerning various properties of path deriv-
atives are based on a system of paths satisfying some of the
intersection conditions (2], [3] as well as on the descriptive
theory of system of paths considered as multifunction (11, [5]
A. Alikhani-Koopaei in [1] uses the system of paths as a con-
tinuous compact - valued multifunction and he quotes the

following example due to Laczkovich.

set P with 0eP so that the congruent extreme derivative of

f with respect to P i.e, f‘é

E(x) = x+P.Hence the multifunction l::f of all E-derived numbers

is not. a Borel function where

of f is not Borel measurable (because of f‘é"‘(‘(a,ocn) -

E;.((a,oco) = GeE GONCa,00> # @ 3. But there is a Baire 4
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selection for Ef. Namely, if {yh)h__1 is a sequence in P\{0>

f(gn(x))-f x> i

so that lim Y. = 0, then g(x> = }‘_1.1'20 sup s in

gn(x)-x

Baire class 4, where gn(x) = yn+ x for all xeR.

The purpose of this paper is to investigate the similar
behavior of Ef for a lower Borel a system of paths E and
a Baire {3 function f.

I1. Basic definitions and notation

Throughout this paper Aa (Ma) denotes the family of all
subsets of R of the Borel additive (multiplicative) class a.
By a multifunction F‘:R-»R‘ we mean a function defined on R
and whose values are subsets of R‘ (the extended real line
with the topology of the two-point compactification of RD.
We also admit empty values for F. Given multifunctions F
and G, FcG means that F(x)cG(x) for all xeR and the multi-
functions FNG and F are defined by FNG(x) = FGONGx) and

F(x) = F(x) where F(x> denotes the closure of FGoO.

For AcR‘ we let
F CAD = (x : FGXONA ¢ @),
FTCA> = (x : FGOCAY,
GrdF) = x,y) : yeF(x)>» (graph of FD.

DEFINITION_2 (the semi Borel classification of multifunc-
tions>. A multifunction F:R+R* is said to be lower Borel o
CFelB > <up;lex~ Borel o (FeuB > if for any open set V<rR*
F (V)erl CF (V)eAa). F is said to be lower (upper) semicon-
tinuous (briefly lsc C(usc)) if FelBo (FeuBo). F is continuous
if it is lsc and usc. Note that within single-valued multi-
functions the semi Borel classification coincides with the

Baire classification of functions.
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If E is a system of paths and f is a function, then we
denote by IE:f the following non-empty and compact-valued multi-

function from R to R. defined as follows:

Ef(x) = (yeR.: there is a sequence {:.:"}::'_:_’1 in EGONGO

so that lim x = x and lim w = y ) i.e. E_. is the
N0 n-00 f

n
X —X
n

multifunction of all E-derived numbers of f.

III. Results.

LEMMA 3. Let H:R+R be an open graph multifunction. If

F:R+R is lower Borel a, then FnH is lower Borel a.

PROOF. Define F ‘R+RxR by F

GrCHD 0O = COOIXFXONGrHD.

GrdF>

Let GrdH> = t)n H xK , where H ,K are open. If G ,G cR are
n=1 n n n n 1 2

- o) -
open, then F @xG )= U (F KM@ OXXXH NG d>A . The
GrdH> 1" 2 n=1 n 2 n o1 a

equality (FNH> @G> = FGr(H)

(RxG)> finishes the proof where GcR

is an arbitrary open set.

with closed values ( i.e. E is considered as a closed-valued
multifunction in l'Ba)‘ If £ is a Baire {3 function (320>, then
there is an upper Borel a+3+1 non-empty and compact-valued
multifunction S:R-»R‘ such that ScEf. Consequently if f has
E-derivative (finite or infinite), then it is in Baire class
at3+1.

£

PROOF. Define H :R+R by H GO = (x -+ - &£ | x -2 > U
n n n n+ 1

n

1 1 & .
(x +;:, x + - + ? > n = 1,2,3,.. where £ is a positive
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constant. By Lemma 3, EﬁHnelBa. Since (Enl-ln)_(G) =

CENH > (@ for any G open, ENH €lB . Let X ={x : EnH_GO$S)=
n n a n n

& : ENH > (RD>€A and A (X > = {(AcX : A is a set of the

n a a n n
Borel additive class a with respect to Xn}. Since Aa(xn) =
{ AcX : A= XMnB for some BeA > and X €A , there is a
n n a a o
selection gn:Xn-oR for the restriction Enﬂn to Xn so that
g;‘(G)GAOl for every open GcR (see [4D.

f (gﬂ(x))-f (€3 It is clear

Define f : X «R by f (x) =
n n n
gn(x)-x

for every open G. Since ntJt Hn-

-1

that fn @ € Aa+ﬁ

xX=1-£,xHM+e)\{X> and x is a limit point of E(x), x is also
[« <]

a limit point of ny‘ Xn for all x € R. Consequently the

following multifunction S:R+R* defined by SGoO=(yeR®: there

©o
is a subsequence {nk}ka with S'L(’Oex“k and y-&_i.g.} f“k (6/9) 4

is non-empty and compact-valued. The equality S K =

0 ©o 4 .

kg1 nL___Jk fn (Vk) € Mcr'-i (where K is an arbitrary closed

set in R* and V. are open in R* with V. <V, B Vv = K>
K P ket Sk kZ1 ke

finishes the proof since S'(R\K) = R\S <KD.
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Theorem 4 concerning closed values of E can be omitted
because Ef = Ef.

COROLLARY 6. Under the same conditions on E and f as in

Theorem 4, there is a Baire at+3+2 selection for Ef.

PROOF. Multifunction S from Theorem 4 is in 1B and
atf3+2

by [4] there is a Baire a+3+2 selection for S.

Note that the selection theorem of Kuratowski and Ryll-
Nardzewski [4] being used in the proof of Theorem 4 holds
for o>0. We state as corollary the following weaker version
of it for o=0.

a closed-valued lower <(upper) semicontinuous system of paths
and f is in Baire class 3 (320>, then there is a non-empty
compact-valued upper Borel 3+2 multifunction ScEf. If £ has
E-derivative (finite or infinite), then f l|=2 is a Baire [3+2

function.

The assertion follows directly from Theorem 4 because of

EelB .
1

As we saw in Example 1 Ef need not be Borel measurable.

We now briefly discuss some special cases for which Ef be-

haves very nicely. The following theorems give the conditions
on E and f for which IBf is in uB‘ or uBz. :

The proof of the next. assertion is trivial and hence
omitted.

be a function. If K is a closed set in R‘, then
E.CK> = A prdf 'V DAGrCE >> where
f n=1 o n n
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£CxO-£CyD

=y for x % vy,

fo((x,y)) =
E () = EGONCx - i , X+ % > xR, n = 1,2,3...,

t o -
V_ are open in R such that n V = K, V <V, n=1,2,. ,
n n=4 n h+t n

and pr(A) = {x : there is y such that (x,y>eA) where AcRxR.

paths and let f be a continuous function. Then Ef is an

upper Borel one multifunction.

PROOF. We shall show that Ah = pr(f;i(vn)ﬁGr(En)) is open.
Let xoeAn. Then there is yeR such that (xo,y)ef;i(vn) and ye
En(xo). Since fo is continuous, there is IxJa(xo,y) where I1,]J
are open intervals such that Ix]J < f‘;‘(vn). Since En is Isc,
there is an open set GclI with xoeG such that En(x)r\] $ O
for any x€G. Thus for any xeG there is Yy € En(x)f\]. Since

x,y_) € GrCE > £ v >, we know that xeA for any xeG. By
X n o n n

Lemma 10, E:f

(K>eM . Hence E_<cuB .
1 f 1

The following theorem follows directly from Lemma 10.

Theorem 12.

<(a) If Gr(E) is open and f is continuous, then E_ € uB‘.

€ uB .
2

f
(bd If Gr(E) is a Fa set and f is Baire 1, then Ef
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COROLLARY 13

Ca) If E is usc and f is continuous, then ET e uBz.
(b)) If E is usc with closed values and f is Baire 1, then
l:‘.f € uBz.

PROOF. Ca)> Since E is usc, Gr(E> is closed. By Theorem 12<(bD,

Ef € uBz because Ef = IE‘r

(b> It follows from Theorem 12¢(b) since Gr(E) is closed.

The remaining cases are formulated as the following open

problems.

PROBLEM 14. What is the semi Borel classification of E_ if

““““““ f
ad l:‘.el.Bol (a<1) and f is Baire 1,
b> l"JeuB1 and f is Baire 3 (<1,
<« Eel.Bal (a21) and f is continuous?

PROBLEM 15. Is there a Baire a+f3#+1 selection for E_. (&,320).

---------- £

REFERENCES

1. A. Alikhani-Koopaei, Borel measurability of extreme path
derivatives, Real Analysis Exchange 12 (1986-87), 216-246.

2. AM.Bruckner, R.J.0O’Malley, B.S.Thomson, Path derivatives:
A unified view of certain generalized derivatives, Trans.

Amer. Math. Soc. 283 (1984)>, 97-125.

3. C.B.Cordy, On the relationship between the external inter-
section condition and the intersection condition for path

derivatives, Real Analysis Exchange 13 (1987-88), 420-431.

4. K Kuratowski and C.Ryll-Nardzewski, A general theorem on
selectors, Bull. Acad. Pol. Sci. Sér. Sci. Math.,, Astr., Phys.13
1965)>, 397-403.

317



5. M.MMate jdes, On the path derivatives, Real Analysis Exchange 13
(1987-88>, 373-389.

Recoived | Februsery, 1990

318



	Contents
	p. 311
	p. 312
	p. 313
	p. 314
	p. 315
	p. 316
	p. 317
	p. 318

	Issue Table of Contents
	Real Analysis Exchange, Vol. 16, No. 1 (1990-91) pp. 1-376
	Front Matter
	EDITORIAL MESSAGE [pp. 4-4]
	LETTERS to the EDITOR [pp. 5-6]
	ERRATA: A CRITERION FOR MEASURABILITY OF COUNTABLE-TO-ONE FUNCTIONS [pp. 7-7]
	CONFERENCE ANNOUNCEMENTS [pp. 8-8]
	REPORT OF THE FOURTEENTH SUMMER SYMPOSIUM
	THE FOURTEENTH SUMMER SYMPOSIUM ON REAL ANALYSIS, California State University, San Bernardino, June 20-12, 1990 [pp. 9-14]
	DESCRIPTIVE SET THEORETIC PHENOMENA IN ANALYSIS AND TOPOLOGY [pp. 15-16]
	DENSITY TOPOLOGY AND COMPLETELY RAMSEY SETS [pp. 17-19]
	A short proof of a theorem of Jasinski and Weiss [pp. 20-20]
	THE FAMILY OF COMPACT POROUS SETS [pp. 21-22]
	A GLIMM-EFFROS DICHOTOMY FOR BOREL EQUIVALENCE RELATIONS [pp. 23-23]
	Non—Uniformization Results for the Projective Hierarchy [pp. 24-25]
	AN INTEGRAL IN GEOMETRIC MEASURE THEORY [pp. 26-28]
	Henstock and Lebesgue integration [pp. 29-29]
	Transfinite Induction and Integrals [pp. 30-31]
	CONVERGENCE THEOREMS FOR THE HENSTOCK INTEGRAL [pp. 32-33]
	Integration by Parts in the SCP Integral [pp. 34-34]
	First Return Selections and Block Selections [pp. 35-36]
	Three Methods of Constructing ω-limit Sets [pp. 37-38]
	Some results and problems about ω-limit sets [pp. 39-40]
	Countable Collections of ω-limit sets for Darboux Baire 1 Functions [pp. 41-41]
	Differentiable-, continuous-, and Derivative-Restrictions of Measurable Functions [pp. 42-43]
	[Extendable Functions with a Dense Graph] [pp. 44-44]
	APPROXIMATE HIGH ORDER SMOOTHNESS [pp. 45-46]
	Proofs of the Uher and Freiling Covering Theorems [pp. 47-49]
	SOME INTERPOLATION PROBLEMS IN REAL AND HARMONIC ANALYSIS [pp. 50-50]
	On category bases: Abstract [pp. 51-52]
	REFINEMENTS OF THE DENSITY AND I-DENSITY TOPOLOGIES [pp. 53-54]
	EXTREME POINT SELECTORS [pp. 55-56]
	Parametric I-approximate derivatives are in Baire class one [pp. 57-58]
	(ε,η)-Approximating Partitions [pp. 59-59]

	RESEARCH ARTICLES
	ON THE BOREL HIERARCHIES OF COUNTABLE PRODUCTS OF POLISH SPACES [pp. 60-66]
	Martin's Axiom implies a stronger version of Blumberg's Theorem [pp. 67-73]
	ON GENERALIZED DOMINATED CONVERGENCE [pp. 74-78]
	A Theory of Integration for Cardinal Algebras [pp. 79-118]
	On non-differentiable measure-preserving functions [pp. 119-129]
	On Riemann summable trigonometric series [pp. 130-153]
	THE INVERSION OF APPROXIMATE AND DYADIC DERIVATIVES USING AN EXTENSION OF THE HENSTOCK INTEGRAL [pp. 154-168]
	ALGEBRAIC STRUCTURES GENERATED BY Td-QUASI CONTINUOUS AND ALMOST CONTINUOUS FUNCTIONS ON Rm [pp. 169-176]
	Separation of points by families of intervals [pp. 177-186]
	Convexity and Symmetric Derivates of Measurable Functions [pp. 187-196]
	An Analytic Study of Functions defined on Self-Similar Fractals [pp. 197-214]
	Upper and Lower Generalized Riemann Integrals [pp. 215-237]
	Pseudo-Orbit Shadowing on the Unit Interval [pp. 238-244]
	CHARACTERISTIC FUNCTIONS AND PRODUCTS OF DERIVATIVES [pp. 245-254]
	Topologies generated by porosity and strong porosity [pp. 255-267]
	A Global Implicit Function Theorem [pp. 268-272]

	INROADS
	Asymmetry of all Countable orders of a real function [pp. 273-278]
	Solution of two problems concerning F-sigma sets of measure zero [pp. 279-283]
	A note on topologies related to (xα )-porosity [pp. 284-291]
	ON DECOMPOSITIONS OF QUASICONTINUITY [pp. 292-305]
	ANOTHER APPROACH TO THE CONTROLLED CONVERGENCE THEOREM [pp. 306-310]
	PATH DIFFERENTIATION IN BOREL THE SETTING [pp. 311-318]
	S-NULL FUNCTIONS [pp. 319-321]
	BAIRE MEASURES ON [O, Ω] AND [O, Ω]. II [pp. 322-328]
	A Symmetric Approximate Perron Integral for the Coefficient Problem of Convergent Trigonometric Series [pp. 329-339]
	ADDITIVITY OF POROUS SETS [pp. 340-343]
	THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH EVERY DENSITY [pp. 344-348]
	A MINIMAL FAMILY OF OPEN INTERVALS GENERATING THE BOREL SETS [pp. 349-352]
	Some interpolation problems in real and harmonic analysis [pp. 353-361]
	Three Methods of Constructing ω-Limit Sets [pp. 362-372]

	QUERIES [pp. 373-376]
	Back Matter



