Real Analysis Exchange Vol 16 (1990-91)

Milan MATEJDES, Katedra matematiky a fyziky VSLD, 960 53 Zvolen Czechoslovakia

> PATH DIFFERENTIATION IN BOREL THE SETTING

<u>I. Introduction</u>. A unifying approach to the study of a number of generalized derivatives was introduced by Bruckner, O'Malley and Thomson in [2]. Namely, a set $E(x) \subset \mathbb{R}$ (the real line with the usual topology) is a path at $x \in \mathbb{R}$ if x is a limit point of E(x). A system of paths E, is a collection (E(x) : $x \in \mathbb{R}$) (or it can be considered as a multifunction $E:x \to E(x)$), where each E(x) is a path at x. If $f:\mathbb{R} \to \mathbb{R}$ is a function, then the extreme E-derivatives of f at a point x are defined as follows

 $\bar{f}_E^{\dagger}(x) = \lim_{\substack{y \to x \\ y \in E(x)}} \sup \frac{f(x) - f(y)}{x - y} \quad \text{and} \quad \underline{f}_E^{\dagger}(x) = \lim_{\substack{y \to x \\ y \in E(x)}} \inf \frac{f(x) - f(y)}{x - y} .$

If $\overline{f}_E^{(x)} = \underline{f}_E^{(x)}$, their common value is called the E-derivative of f at x ($f_E^{(x)}$).

Many results concerning various properties of path derivatives are based on a system of paths satisfying some of the intersection conditions [2], [3] as well as on the descriptive theory of system of paths considered as multifunction [1], [5]. A. Alikhani-Koopaei in [1] uses the system of paths as a continuous compact - valued multifunction and he quotes the following example due to Laczkovich.

<u>EXAMPLE 1</u>. There is a Baire 2 function f and a perfect set P with 0 eP so that the congruent extreme derivative of f with respect to P i.e., \overline{f}_E^+ is not a Borel function where E(x) = x+P.Hence the multifunction E_f of all E-derived numbers of f is not Borel measurable (because of $\overline{f}_E^{+-1}((a,\infty)) = E_f^-((a,\infty)) := (x:E_f(x)\cap(a,\infty) \neq 0)$). But there is a Baire 4 selection for E_f . Namely, if $\{y_n\}_{n=1}$ is a sequence in P\(0)

so that $\lim_{n \to \infty} y = 0$, then $g(x) = \lim_{n \to \infty} \sup \frac{f(g_n(x)) - f(x)}{g_n(x) - x}$ is in

Baire class 4, where $g_n(x) = y + x$ for all $x \in \mathbb{R}$.

The purpose of this paper is to investigate the similar behavior of E_f for a lower Borel α system of paths E and a Baire β function f.

II. Basic definitions and notation

Throughout this paper A_{α} (M_{α}) denotes the family of all subsets of R of the Borel additive (multiplicative) class α . By a multifunction $F:R \cdot R^{\ddagger}$ we mean a function defined on R and whose values are subsets of R^{\ddagger} (the extended real line with the topology of the two-point compactification of R). We also admit empty values for F. Given multifunctions F and G, F<G means that F(x) < G(x) for all $x \in R$ and the multifunctions F \cap G and \overline{F} are defined by $F \cap G(x) = F(x) \cap G(x)$ and $\overline{F}(x) = \overline{F(x)}$ where $\overline{F(x)}$ denotes the closure of F(x).

For $A \subset \mathbb{R}^*$ we let $F^-(A) = \langle x : F(x) \cap A \neq \emptyset \rangle$, $F^+(A) = \langle x : F(x) \subset A \rangle$, $Gr(F) = \langle (x,y) : y \in F(x) \rangle$ (graph of F).

<u>DEFINITION 2</u> (the semi Borel classification of multifunctions). A multifunction $F:R \rightarrow R^*$ is said to be lower Borel α (FelB_{α}) (upper Borel α (FeuB_{α})) if for any open set VCR^{*} $F^{-}(V) \in A_{\alpha}$ ($F^{+}(V) \in A_{\alpha}$). F is said to be lower (upper) semicontinuous (briefly lsc (usc)) if $F \in IB_{o}$ (FeuB_o). F is continuous if it is lsc and usc. Note that within single-valued multifunctions the semi Borel classification coincides with the Baire classification of functions. If E is a system of paths and f is a function, then we denote by E_{f} the following non-empty and compact-valued multi-function from R to R^{*} defined as follows:

 $E_f(x) = (y \in \mathbb{R}^*: \text{ there is a sequence } (x)_{n=1}^{\infty} \text{ in } E(x) \setminus (x)$ so that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} \frac{f(x_n) - f(x)}{x_n - x} = y > \text{ i.e. } E_f$ is the multifunction of all E-derived numbers of f.

III. Results.

<u>LEMMA 3</u>. Let $H:R \rightarrow R$ be an open graph multifunction. If $F:R \rightarrow R$ is lower Borel α , then $F \cap H$ is lower Borel α .

PROOF. Define $F_{Gr(H)}:R*R*R$ by $F_{Gr(F)}(x) = ((x)*F(x))\cap Gr(H)$. Let $Gr(H) = \bigcup_{n=1}^{\infty} H_xK_n$, where H_nK_n are open. If $G_1, G_2 \subset R$ are open, then $F_{Gr(H)}(G_1xG_2) = \bigcup_{n=1}^{\infty} ((F^-(K_n \cap G_2))\cap H_n \cap G_1) \in A_n$. The equality $(F \cap H)^-(G) = F_{Gr(H)}(R*G)$ finishes the proof where $G \subset R$ is an arbitrary open set.

<u>THEOREM 4</u>. Let E be a lower Borel α (α >0) system of paths with closed values (i.e. E is considered as a closed-valued multifunction in IB_{α}). If f is a Baire β function ($\beta \ge 0$), then there is an upper Borel $\alpha+\beta+1$ non-empty and compact-valued multifunction S:R+R^{*} such that SCE_f. Consequently if f has E-derivative (finite or infinite), then it is in Baire class $\alpha+\beta+1$.

PROOF. Define $H_n:R+R$ by $H_n(x) = (x - \frac{1}{n} - \frac{\varepsilon}{n}, x - \frac{1}{n+1}) \cup (x + \frac{1}{n+1}, x + \frac{1}{n} + \frac{\varepsilon}{n}) = 1,2,3,...$ where ε is a positive

constant. By Lemma 3, $E \cap H_n \in IB_{\alpha}$. Since $(\overline{E} \cap H_n)^{-1}(G) = (E \cap H_n)^{-1}(G)$ for any G open, $\overline{E} \cap \overline{H}_n \in IB_{\alpha}$. Let $X_n = (x : \overline{E} \cap \overline{H}_n(x) \neq \emptyset) = (x : (\overline{E} \cap \overline{H}_n)^{-1}(R)) \in A_{\alpha}$ and $A_{\alpha}(X_n) = (A \subset X_n : A \text{ is a set of the})$ Borel additive class α with respect to X_n . Since $A_{\alpha}(X_n) = (A \subset X_n : A = X_n \cap B$ for some $B \in A_{\alpha}$ and $X_{\alpha} \in A_{\alpha}$, there is a selection $\mathfrak{s}_n : X_n + R$ for the restriction $\overline{E} \cap \overline{H}_n$ to X_n so that $\mathfrak{s}_n^{-1}(G) \in A_{\alpha}$ for every open $G \subset R$ (see [4]).

Define
$$f_n: X_n \to R$$
 by $f_n(x) = \frac{f(g_n(x)) - f(x)}{g_n(x) - x}$. It is clear

that $f_n^{-1}(G) \in A_{\alpha+\beta}$ for every open G. Since $\bigcap_{n=1}^{\infty} H_n = (x-1-\varepsilon,x+1+\varepsilon)\setminus \langle x \rangle$ and x is a limit point of E(x), x is also a limit point of $\bigcap_{n=1}^{\infty} X_n$ for all $x \in \mathbb{R}$. Consequently the following multifunction S:R+R^{*} defined by $S(x)=\{y\in\mathbb{R}^*: \text{there}$ is a subsequence $\{n_k\}_{k=1}^{\infty}$ with $g_n(x)\in X_n$ and $y=\lim_{k\to\infty} f_n(x)\}$ is non-empty and compact-valued. The equality $S^-(K) =$ $\bigcap_{k=1}^{\infty} \bigcap_{n=k}^{\infty} f_n^{-1}(V_k) \in M_{\alpha+\beta+1}$ (where K is an arbitrary closed set in \mathbb{R}^* and V_k are open in \mathbb{R}^* with $\overline{V}_{k+1} \subset V_k$, $\bigcap_{k=1}^{\infty} V_k = K$) finishes the proof since $S^*(\mathbb{R}\setminus K) = \mathbb{R}\setminus S^-(K)$. <u>REMARK 5</u>. If f is continuous, then the assumption of Theorem 4 concerning closed values of E can be omitted because $E_f = \bar{E}_f$.

<u>COROLLARY 6</u>. Under the same conditions on E and f as in Theorem 4, there is a Baire $\alpha+\beta+2$ selection for E_r.

PROOF. Multifunction S from Theorem 4 is in $IB_{\alpha+\beta+2}$ and by [4] there is a Baire $\alpha+\beta+2$ selection for S.

Note that the selection theorem of Kuratowski and Ryll-Nardzewski [4] being used in the proof of Theorem 4 holds for $\alpha>0$. We state as corollary the following weaker version of it for $\alpha=0$.

<u>COROLLARY 9</u>. (An improvement of [1,Theorem 18]. If E is a closed-valued lower (upper) semicontinuous system of paths and f is in Baire class β ($\beta \ge 0$), then there is a non-empty compact-valued upper Borel $\beta+2$ multifunction $S \le E_f$. If f has E-derivative (finite or infinite), then f_E^{\dagger} is a Baire $\beta+2$ function.

The assertion follows directly from Theorem 4 because of $E \in IB_{2}$.

As we saw in Example 1 E_f need not be Borel measurable. We now briefly discuss some special cases for which E_f behaves very nicely. The following theorems give the conditions on E and f for which E_f is in uB₁ or uB₂.

The proof of the next assertion is trivial and hence omitted.

LEMMA 10. Let E be an arbitrary system of paths and f let be a function. If K is a closed set in R^* , then

$$\mathbf{E}_{\mathbf{f}}^{-}(\mathbf{K}) = \bigcap_{n=1}^{\infty} \mathbf{pr}(\mathbf{f}_{\mathbf{0}}^{-1}(\mathbf{V}_{n}) \cap \mathbf{Gr}(\mathbf{E}_{n})) \text{ where }$$

$$f_{0}((x,y)) = \frac{f(x)-f(y)}{x-y} \quad \text{for } x \neq y,$$

$$E_{n}(x) = E(x) \cap (x - \frac{1}{n}, x + \frac{1}{n}) \quad x \in \mathbb{R}, n = 1,2,3...,$$

$$V_{n} \text{ are open in } \mathbb{R}^{\ddagger} \text{ such that } \bigcap_{n=1}^{\infty} V_{n} = K, \quad \overline{V}_{h+1} \subset V_{n}, \quad n=1,2,...,$$
and $pr(A) = (x : \text{ there is } y \text{ such that } (x,y) \in A) \text{ where } A \subset \mathbb{R} \times \mathbb{R}.$

<u>THEOREM 11</u>. Let E be a lower semicontinuous system of paths and let f be a continuous function. Then E_{f} is an upper Borel one multifunction.

PROOF. We shall show that $A_n = pr(f_0^{-1}(V_n) \cap Gr(E_n))$ is open. Let $x_0 \in A_n$. Then there is $y \in R$ such that $(x_0, y) \in f_0^{-1}(V_n)$ and $y \in E_n(x_0)$. Since f_0 is continuous, there is $IxJ \ni (x_0, y)$ where I, J are open intervals such that $IxJ \subset f_0^{-1}(V_n)$. Since E_n is lsc, there is an open set $G \subset I$ with $x_0 \in G$ such that $E_n(x) \cap J \neq 0$ for any $x \in G$. Thus for any $x \in G$ there is $y_x \in E_n(x) \cap J$. Since $(x, y_x) \in Gr(E_n) \cap f_0^{-1}(V_n)$, we know that $x \in A_n$ for any $x \in G$. By Lemma 10, $E_f^{-1}(K) \in M_1$.

The following theorem follows directly from Lemma 10.

<u>Theorem 12</u>. (a) If Gr(E) is open and f is continuous, then $E_f \in uB_1$. (b) If Gr(E) is a F_{σ} set and f is Baire 1, then $E_f \in uB_2$.

COROLLARY 13

(a) If E is use and f is continuous, then $E_{f} \in uB_{2}$. (b) If E is use with closed values and f is Baire 1, then $E_{f} \in uB_{2}$.

PROOF. (a) Since \overline{E} is usc, $Gr(\overline{E})$ is closed. By Theorem 12(b), $E_f \in uB_2$ because $\overline{E}_f = E_f$.

(b) It follows from Theorem 12(b) since Gr(E) is closed.

The remaining cases are formulated as the following open problems.

<u>PROBLEM 14</u>. What is the semi Borel classification of E_f if (a) $E \in IB_{\alpha}$ ($\alpha \le 1$) and f is Baire 1, (b) $E \in uB_1$ and f is Baire β ($\beta \le 1$), (c) $E \in IB_{\alpha}$ ($\alpha \ge 1$) and f is continuous?

PROBLEM 15. Is there a Baire $\alpha + \beta + 1$ selection for $E_f(\alpha, \beta \ge 0)$.

REFERENCES

- 1. A. Alikhani-Koopaei, Borel measurability of extreme path derivatives, Real Analysis Exchange 12 (1986-87), 216-246.
- A.M. Bruckner, R.J.O'Malley, B.S.Thomson, Path derivatives:
 A unified view of certain generalized derivatives, Trans.
 Amer. Math. Soc. 283 (1984), 97-125.
- 3. C.B.Cordy, On the relationship between the external intersection condition and the intersection condition for path derivatives, Real Analysis Exchange 13 (1987-88), 420-431.
- K.Kuratowski and C.Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Pol. Sci. Sér. Sci. Math., Astr., Phys.13 (1965), 397-403.

5. M.Matejdes, On the path derivatives, Real Analysis Exchange 13 (1987-88), 373-389.

Received 1 February, 1990