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 ANOTHER APPROACH TO THE CONTROLLED CONVERGENCE THEOREM

 The controlled convergence theorem is a convergence theorem for the Henstock integral. See

 Lee and Chew [1,2] for one proof of this theorem. The approach taken there is to actually find the

 gauge function 6. In this paper, we present a proof that uses the descriptive characterization of the

 Henstock integral. A function / is Henstock integrable on [a, b] if and only if there exists an ACG *

 function F on [a, 6] such that F' = / almost everywhere on [a, 6].

 We will assume that the reader is familiar with ACG and ACG* functions (see Saks [4]),

 as well as the Henstock integral. Let V = {(£t-,[ci,dt-]) : 1 < * < N} be a finite collection of

 non-overlapping tagged intervals in [a, 6]. We will always assume that the tag is a point in the

 interval. Let 6 be a positive function defined on [a, 6]. We say that V is subordinate to 6 if

 [e,-, d{] C (xj - ¿(xt), Xi + ¿(x¿)) for each i. Let E be the closure of the set E and u )(Fy [c,d]) be the

 oscillation of the function F on the interval [c, d].

 DEFINITION: Let {i^} be a sequence of ACG functions defined on [a, 6] and let E C
 [a, b]. The sequence {Fn} is equi-uniformly ACG ( ACG* ) on E if E can be written as a

 countable union of sets on each of which the sequence {Fn} is equi AC (AC*).

 Here is a brief explanation of the term equi-uniformly ACG . A family {Fo} of ACG functions

 on E is uniformly ACG on E if E can be written as a countable union of sets on each of which

 each Fq is AC. The term equi-uniformly ACG then indicates that not only is there a common

 decomposition, but that the functions are equi AC on each set. We note that the sequence {Fn}

 of continuous functions is equi AC * on E if it is equi AC* on E.

 We begin with several lemmas. The proof of the first is a routine exercise.

 LEMMA 1: Let { Fn } be a sequence of functions defined on [a, 6] and suppose that
 {/"n} converges pointwise to a continuous function F on [a, 6]. If {-Fn} is equi-uniformly

 ACG* on [a, 6], then F is ACG * on [a, 6].

 Let F : [a, 6] - ► R and let E be a subset of [a, 6]. Define

 n n

 V(FiE) = snĄ^T'F(di)-F(ci)'} and V*(FtE) = sup{j>(/; [«,*])}
 i=i ¿=1
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 where the supremum is taken over all finite collections {[c¿,d¿]} of non-overlapping intervals whose

 endpoints belong to E. The following version of the Vitali convergence theorem is needed in the

 proof of the next lemma. See Natanson [3].

 VITALI CONVERGENCE THEOREM: Let {/„} be a sequence of Lebesgue integrable
 functions defined on [a, 6] and suppose that {/n} converges to / almost everywhere on

 [a, 6]. If the sequence {f* fn) is equi AC on [a, 6], then / is Lebesgue integrable on [a, 6]

 and ¡baf = jir^/a/n.

 LEMMA 2: Let {/„} be a sequence of Lebesgue integrable functions defined on [a, 6]

 and let Fn(x ) = J' fn for each n. Suppose that {/„} converges to / almost everywhere
 on [a, 6] and that {Fn} converges pointwise to 0 on [a, 6]. If the sequence {.Fn} is equi
 AC on [a, 6], then the sequence {V(.Fn,[a,&])} converges to 0.

 PROOF: By the Vitali Convergence Theorem, the function / is Lebesgue integrable on [o,6] and

 r / = lim Fn(x ) = 0 for all x 6 [a, b]. Hence / = 0 almost everywhere on [a, 6]. Now {|/„|}
 n-too

 converges to 0 almost everywhere on [a, 6] and the sequence {J* |/n|} is equi AC on [a, 6]. Applying

 the Vitali Convergence Theorem once again, we find that lim V(Fn, [a, 6]) = lim fb ® 'fn' = 0. n-too n - *00 ®

 LEMMA 3: Let {/n} be a sequence of Henstock integrable functions defined on [a, 6],

 let = J* fn f°r each n, and let £ be a closed subset of [a, 6]. Suppose that {/n}
 converges to / almost everywhere on [a, 6] and that {i^} converges uniformly to 0 on
 [a, 6]. If the sequence { Fn } is equi AC* on E , then the sequence {V*(Fn, £)} converges
 to 0.

 PROOF: Without loss of generality, we may assume that a, 6 6 E, Let [a, 6] - E = (J For

 each fc, let uk = a* + 0.3(6* - a*) and = a* + 0.7(6* - û k )• The set A = E U {w*} U {v*} is

 closed. For each n, define a function Gn on [a, 6] by setting

 ( Fn(x), if x e E;
 Gn(x ) = I inf{Fn(x) : x G [a*, 6*]}, if x = uk ;

 I sup{Fn(z) : x e [a*, 6*]}, if x = vk;

 for x 6 A and letting Gn be linear on the intervals contiguous to A. Note that u ;(Fn, [c,cf]) =

 u;(Gn, [c,d]) for each interval [c,d] C [a, 6] with endpoints in E . We will prove that the sequence

 {Gn} is equi AC * on A.

 Let € > 0. Choose t/i > 0 such that ]TV u(Fny [c¿,d,]) < e/4 for all n whenever {[c¿, dj]} is a finite

 collection of non-overlapping intervals whose endpoints belong to E and satisfy ~~ c«) < fa-

 Choose a positive integer M such that - °*) < % /2 and let V = min{i7i/2, {0.2(6* - ak ) :

 1 < k < M}}. Suppose that {[c,, : 1 < t' < p} is a finite collection of non-overlapping intervals
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 whose endpoints belong to A and satisfy - c¿) < r¡. By subdividing some of these intervals

 if necessary, we may assume that either E fi ^ 0 or [c¿,d¿] C for some k. Let
 *6 = 0 : 6 E], 7T/ = {i' : c, e E, di £ E), irr = {i : Cļ $ E,di € E }, and x0 = {t : c,.di £ E }.
 Fix n. We first observe that

 ^2 w(Gn,[ci,di]) = w(Fn,[cj,d,]) < e/4.
 »€*» »'€*■»

 For each i 6 t0, there exists a unique k{> M such that (c,, di) C Hence

 £>(<?«,[*>*])< 5>(G„,[afcj,6fcJ) = £ u,(Fn, [a*.,òfcJ) < </4.
 ť 6 ttq t € tfo * € *o

 For each i € *>, there exists a unique ki > M such that a*( < c,- < bki. We then have

 £u,(Gn, [cť,d,]) < 2(o»(Gn,[afci,6fci]) + u;(í?n,[6fc„dť]))
 «€*> «€*r

 = 53 (u>(Fn, [a*, , bki)) + u(Fn,[bki , dť]))
 ÍG*r

 < f/4.

 The same result holds for the sum over ?rj. Combining all of these inequalities, we find that

 52ťt*>(Gn,[c,-,di]) < £. This shows that the sequence {(?„} is equi AC * on A.

 Now the sequence {(?«} is equi AC on [a, b] and converges pointwise to 0 on [a, 6]. Each of

 the functions G'n is Lebesgue integrable on [a, 6] and Gn(x) = J* G'n for each n. Furthermore,

 the sequence converges to 0 on [a, 6] - A and converges to / almost everywhere on A. Let

 € > 0. By the previous lemma, there exists an integer N such that {V(Gn, [a, 6])} < ( for all

 n > N. Suppose that n > N and let {[c¿,d¿]} be a finite collection of non-overlapping intervals

 whose endpoints belong to E. Then

 5>(Fn,k,d,]) = J>(Gn,[Ci,dť]) < V(Gn,[a,b}) < e
 i i

 and it follows that V+(Fn, E) < e. This completes the proof.

 LEMMA 4: Let {/„} be a sequence of Henstock integrable functions defined on [a, 6]

 and let Fn(x) = J* fn for each n. Suppose that {/„} converges to / almost everywhere
 on [a, 6] and that the sequence {is,} is equi- uniformly ACG+ on [a,i>]. Let [a, 6] = (J« -E»

 where each Ei is closed and {Fn} is equi AC* on each Eļ. If {Fn} converges uniformly
 to F on [a, 6], then {V*(Fn - F,Ei)}%Ļļ converges to 0 for each i.

 PROOF: The function F is ACG+ on [a, 6] by Lemma 1. It follows that F' exists almost everywhere

 on [a, 6] and is Henstock integrable on [a, 6]. Fix ». The sequences {/n - F'} and {Fn - F} satisfy

 all of the hypotheses of Lemma 3 on Ei. Hence {V*(Fn - F, £,-)} converges to 0.
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 LEMMA 5: Let G : [a, 6] - ► R and let E C [a, 6] be closed. Let c and d be the bounds

 of E and let V - {(z*, [c*, d* ]) : 1 < k < p) be a collection of non-overlapping tagged
 p

 intervals in [c,d]. If x* € E for each k , then ^ u(Gy[ck,dk]) < 3V*(G, £).
 k=l

 PROOF: Let [c,d] - E = We may assume that each of the tags of V occurs as an
 endpoint. Let i rb = {k : Ck,dk G 2?}, *i = {k : d* ^ E }, and 7rr = {k : c* $ E }. Clearly

 Yi u>(G,[ckidk') < V*(G,E). For each k 6 tt/, there exists a unique integer ik such that alik <
 ke*b

 dk < bik. Hence

 </*])< VkkaiJļ + ^K,^))) <V*(G,E).
 *6*1 keift

 A similar result holds for wr and the lemma follows.

 CONTROLLED CONVERGENCE THEOREM: Let {/„} be a sequence of Henstock
 integrable functions defined on [a, 6] and let Fn(x) = J* fn for each n. Suppose that
 {/„} converges to / almost everywhere on [a, 6] and that {Fn} converges uniformly to
 F on [a, 6]. If the sequence {.F,,} is equi-uniformly ACG+ on [a, 6], then / is Henstock

 integrable on [a, 6] and /06/= lim f* /„.

 PROOF: Let [a, 6] = |J- E{ where each E¡ is closed and {F„} is equi AC* on each E,. Since the

 function F is AC G * on [a, 6] by Lemma 1, it is sufficient to prove that F' = / almost everywhere

 on [a, 6]. We will prove that the set D = {x € [a, b) : (x) ^ /(x)} has measure zero. The proof

 for the other three Dini derivates is quite similar. Suppose that fi(D) > 0. For each positive integer

 n, let

 Dn = {x ^ 6 D : limsup t X - /(x)| I > iļ. J ^ t- fj-f t X I 71 J

 Since £ = UnUPn fi Ei), there exist integers p and j such that fi(Dp fi Ej) = 2ß > 0. Let c

 and d be the bounds of Ej. By Egorov's Theorem, there exists a set B C Dp fl Ej H (c,d) such

 that n{B) > ß and {/„} converges to / uniformly on B. Choose a positive integer Ni such that

 |/n(x) - /(x) I < l/(36p) for all n > Nļ and ail x 6 B. By Lemma 4, there exists an integer N > N'

 such that V*(F„ - F, Ej) < /3/(36 p) for all n > N . Let 6' be a gauge function for fs corresponding

 to >3/(24 p). Let O be an open set such that B C O C (c,d) and fi(0) < 3/?. For each x € B, let

 ¿(x) be the minimum of ¿i(x) and the distance from x to [a, 6] - O.

 For each x € B and for each h > 0, there exists £ (x, x + h) such that

 VjJ - X I p

 309



 The collection I = ļ^J {[i,Vh] : 0 < h < ¿(x)} is a Vitali cover of B. By the Vitali Covering
 *6 B

 Lemma, there exists a finite collection {[c*,<ífc] : 1 < k < K } of disjoint intervals in I such

 that (dk - Ck) > /?/2. Note that each of the intervals [cfc,d*] C O C (c,d) and that (c*, [cj^d*])

 is subordinate to 6 for each k. Using Henstock's Lemma and Lemma 5, we obtain

 £ P < El F(ik) - Fi'k) - /Mdi, - c»)| P k=l
 K K

 < £|*W - F (c*) - ( Fn + El W") - - fN{ck){dk - Ck) I
 fc=l *=1

 K

 + £l /»(«»)
 k= 1

 K K

 < x; «(f - fn, h, ¿j) + ķ ^ + ¿ - c») fc=l ^ k= 1

 S »%(«,-**,)+£ + g
 < + JL + JL = Ä

 36p 12j> 12p 4p'

 a contradiction. We conclude that fi(D) = 0.
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