Real Analysis Exchange Vol 16 (1990-91)

Tomasz Filipczak, Institute of Mathematics, University of Łódź, ul. S. Banacha 22, 90-238 Łódź, Poland

A note on topologies related to (x^{α}) -porosity

Let (X,ρ) be a metric space. The open ball with the centre $z \in X$ and radius r > 0 is denoted by B(z,r). Let $M \subset X$, $z \in X$ and R > 0. Then we denote by $\gamma(z,R,M)$ the supremum of the set of all r > 0 for which there exists $y \in X$ such that $B(y,r) \subset B(z,R) \setminus M$.

Let $\alpha \in (0,1]$. If

$$\limsup_{R \to 0+} \frac{\gamma(z,R,M)^{\alpha}}{R} > 0,$$

we say that M is (x^{α}) -porous at z. If $\alpha = 1$, then we simply say that M is porous at z.

Let $\alpha \in (0,1)$. If

$$\limsup_{R \to 0+} \frac{Y(z,R,M)^{\alpha}}{R} = \infty,$$

we say that M is (x^{α}) -strongly porous at z. If

$$\limsup_{R \to 0+} \frac{\gamma(z,R,M)}{R} \geq \frac{1}{2},$$

we say that M is (x)-strongly porous at z, or simply, strongly porous at z.

PROPOSITION 1. Let $\alpha \in (0,1]$. If z is not an isolated point of X and M is (x^{α}) -porous at z $((x^{\alpha})$ -strongly porous at z), then $M \cup \{z\}$ is also (x^{α}) -porous at z $((x^{\alpha})$ -strongly porous at z).

Proof. If $z \in \overline{M}$, then the inclusion $B(z_n,r_n) \subset B(z,R_n) \setminus M$ implies $B(z_n,r_n) \subset B(z,R_n) \setminus M \setminus \{x\}$. Hence the assertion holds.

If $z \notin \overline{M}$, then, for a sequence $\{z_n\}$ of points tending to z, we put $r_n = \rho(z, z_n)$ and $R_n = 2r_n$. Then, for sufficiently large n, we have $B(z_n, r_n) \subset B(z, R_n) \setminus M \setminus \{x\}$, $\frac{r_n}{R_n} = \frac{1}{2}$ and $\frac{r_n^{\alpha}}{R_n} \xrightarrow[n \to \infty]{} \infty$ for $\alpha \in (0, 1)$.

In [F] the notions of (x^{α}) -porosity and (x^{α}, ∞) -porosity ((x,1)-porosity for $\alpha = 1$) for subsets of the real line were investigated. Proposition 1 guarantees that if X = R then those notions are equivalent to our notions of (x^{α}) -porosity and (x^{α}) -strong porosity.

We say that $E \subset X$ is (x^{α}) -superporous at z if $E \cup F$ is (x^{α}) -porous at z whenever F is (x^{α}) -porous at z; E is (x^{α}) -strongly superporous at z if $E \cup F$ is (x^{α}) -strongly porous at z whenever F is (x^{α}) -strongly porous at z. E is said to be (x^{α}) -superporous $((x^{\alpha})$ -strongly superporous) if it is (x^{α}) --superporous $((x^{\alpha})$ -strongly superporous) at all its points.

A set $G \subset X$ is said to be (x^{α}) -porosity open if $X \setminus G$ is (x^{α}) -superporous at any point of G. The system of all sets which are (x^{α}) -superporous at a fixed point z forms an ideal. Therefore the system of all (x^{α}) -porosity open sets forms a topology.

We call it the (\mathbf{x}^{α}) -porosity topology and denote by \mathbf{T}_{α} . In the same way we define (\mathbf{x}^{α}) -strong porosity open sets and the (\mathbf{x}^{α}) -strong porosity topology - τ_{α} .

Obviously, all topologies T_{α} and τ_{α} are finer than the ρ -topology of the metric space (X, ρ) . Put

$$T^{\star}_{\alpha} = \{G \setminus P; G \text{ is } T_{\alpha}^{-} \text{open and } P \text{ is a } T_{\alpha}^{-} \text{first}$$

category set},

$$\tau_{\alpha}^{\star} = \{G \setminus P; G \text{ is } \tau_{\alpha}^{-} \text{open and } P \text{ is a } \tau_{\alpha}^{-} \text{first}$$

category set}.

The systems T^{\star}_{α} and τ^{\star}_{α} form topologies (see [M]). They are called the $(x^{\alpha})^{\star}$ -porosity topology and the $(x^{\alpha})^{\star}$ -strong porosity topology.

The following propositions are analogous to Propositions 3-5 and Theorem 2 from Zajiček's paper [Z]. Their proofs are identical with those in [Z]. As usual, we assume that $\alpha \in (0,1]$, $G \subset X$ and $z \in X$.

PROPOSITION 2. If $z \in G$, then the following conditions are equivalent:

(i) G is a T_{α} -neighbourhood of z,

(ii) int G U {z} is a T_{α} -neighbourhood of z,

(iii) $X \setminus G$ is (x^{α}) -superporous at z.

PROPOSITION 3. G is (x^{α}) -porosity open if and only if there are an open set H and some $Z \subset Fr$ H, such that G = $H \cup Z$ and $X \setminus H$ is (x^{α}) -superporous at each point of Z.

PROPOSITION 4. If G is (x^{α}) - porosity open, then A \ int A is (x^{α}) -superporous.

PROPOSITION 5. If (X, ρ) is a Baire space, then T^*_{α} is a category density topology on X, and

> $T_{\alpha}^{\star} = \{G \setminus P; G \text{ is } T_{\alpha}^{-} \text{open and } P \text{ is a } \rho\text{-first}$ category set}.

REMARK 1. Evidently, analogues of Propositions 2-5 for the topologies $\tau_{\alpha}, \tau_{\alpha}^{\star}$ and (x^{α}) -strongly superporous sets are also true.

It is evident that $T_{\alpha \neq} T_{\alpha}^{*}$ and $\tau_{\alpha \neq} \tau_{\alpha}^{*}$ for all $\alpha \in (0,1]$. In [F, Theorem 2 and 3] it was proved that if X = R, then no topology from the collection $\bigcup_{\alpha \in \{0,1\}} \{T_{\alpha}, \tau_{\alpha}\} (\bigcup_{\alpha \in \{0,1\}} \{T_{\alpha}^{*}, \tau_{\alpha}^{*}\})$ is included in any other topology from this collection. Now, we shall prove that all topologies T_{α} and τ_{α} are completely regular. We start with some properties of (x^{α}) -superporosity and (x^{α}) -strong superporosity.

PROPOSITION 6. Let $\alpha \in (0,1]$. If A is (\mathbf{x}^{α}) -superporous at a point x_{0} , then there is an open set G (x^{α}) -superporous at x_0 , including $A \setminus \{x_0\}$.

Proof. We may assume that $\mathbf{x}_{\mathbf{x}}$ is not an isolated point of X, and that $A \subset B(x_{0}, (\frac{1}{2})^{\alpha})$. Put

 $G = \bigcup_{\mathbf{x} \in \mathbb{A} \setminus \{\mathbf{x}_{o}\}} B(\mathbf{x}, \rho(\mathbf{x}, \mathbf{x}_{o})^{(\alpha+1)/\alpha}).$

Let F be (\mathbf{x}^{α}) -porous at \mathbf{x}_{α} . We must show that G U F is (x^{α}) -porous at x_{α} . From the assumption it follows that A U F is (x^{α}) -porous at x_{α} . Hence there are a positive number c and sequences of balls $B(x_n,r_n)$, $B(x_o,R_n)$, such that R_n tends decreasingly to 0 and

(1)
$$B(x_n, r_n) \subset B(x_0, R_n) \setminus A \setminus F$$
 and $\frac{r_n^{\alpha}}{R_n} > c$

for every n. Since

$$\frac{(2R_n)^{(\alpha+1)/\alpha}}{r_n} = \left[\frac{2R_n}{r_n} (2R_n)^{\alpha}\right]^{1/\alpha} \xrightarrow[n \to \infty]{} 0,$$

there is a positive integer n_0 such that $r_n > (2R_n)^{(\alpha+1)/\alpha}$ for $n \ge n_0$. Put

$$\mathbf{s}_{n} = \mathbf{r}_{n} - (2\mathbf{R}_{n})^{(\alpha+1)/\alpha}$$

for $n \ge n_0$. We shall show that

(2)
$$B(x_n, s_n) \subset B(x_o, R_n) \setminus G \setminus F.$$

Suppose the contrary, i.e. there is $n \ge n_0$ such that $B(x_n,s_n) \cap G \ne \emptyset$. Let $y \in B(x_n,s_n) \cap G$. Then

$$\rho(\mathbf{x}_n, \mathbf{y}) < \mathbf{s}_n, \qquad \rho(\mathbf{x}_0, \mathbf{y}) < \mathbf{R}_n,$$

and there exists $x \in A \setminus \{x_0\}$ such that

$$\rho(\mathbf{x},\mathbf{y}) < \rho(\mathbf{x},\mathbf{x}_{o})^{(\alpha+1)/\alpha}, \qquad \rho(\mathbf{x}_{o},\mathbf{x}) < (\frac{1}{2})^{\alpha}.$$

Hence

$$R_{n} > \rho(x_{o}, y) \ge \rho(x_{o}, x) - \rho(x, y) > \rho(x, y)^{\alpha/(\alpha+1)} - \rho(x, y)$$
$$= \rho(x, y) \left(\frac{1}{\rho(x, y)^{1/(1+\alpha)}} - 1\right) > \rho(x, y) \left(\frac{1}{\rho(x, x_{o})^{1/\alpha}} - 1\right)$$
$$\ge \rho(x, y)$$

and, consequently,

$$\rho(\mathbf{x}_{n},\mathbf{x}) \leq \rho(\mathbf{x}_{n},\mathbf{y}) + \rho(\mathbf{x},\mathbf{y}) < \mathbf{s}_{n} + \rho(\mathbf{x},\mathbf{x}_{0})^{(\alpha+1)/\alpha}$$
$$\leq \mathbf{s}_{n} + (\rho(\mathbf{x},\mathbf{y}) + \rho(\mathbf{y},\mathbf{x}_{0}))^{(\alpha+1)/\alpha}$$
$$< \mathbf{s}_{n} + (2\mathbf{R}_{n})^{(\alpha+1)/\alpha} = \mathbf{r}_{n}.$$

This inequality contradicts condition (1) and thus proves condition (2).

Evidently, since $\frac{s_n}{r_n} \xrightarrow[n \to \infty]{} 1$, thus, for sufficiently large n, we have

(3)
$$\frac{s_n^u}{R_n} > c.$$

From (2) and (3) we conclude that $G \cup F$ is (x^{α}) -porous at x_{α} .

PROPOSITION 7. Let $\alpha \in (0,1]$. If A is (x^{α}) -strongly superporous at the point x_{0} , then there is an open set G (x^{α}) -strongly superporous at x_{0} , including $A \setminus \{x_{0}\}$.

Proof. To prove this proposition, it is sufficient to repeat the proof of Proposition 6, changing conditions (1) and (3) only. If $\alpha \in (0,1)$, then we replace these conditions by

(1)
$$B(x_n, r_n) \subset B(x_0, R_n) \setminus A \setminus F$$
 and $\frac{r_n^{\alpha}}{R_n} > n$,
 $s_n^{\alpha} = 1$

$$(3^{\prime}) \qquad \frac{s_n}{R_n} > \frac{1}{2}n.$$

If $\alpha = 1$, then we put

$$(1'') \quad B(x_n,r_n) \subset B(x_0,R_n) \setminus A \setminus F \quad \text{and} \quad \frac{1}{R_n} > \frac{1}{2} - \frac{1}{n},$$

$$(3'') \qquad \frac{s_n}{R_n} = \frac{r_n}{R_n} - 4R_n > \frac{1}{2} - \frac{1}{n} - 4R_n \xrightarrow{n \to \infty} \frac{1}{2}.$$

By a slight modification of the proof of Propositions 6 and 7 we get

PROPOSITION 8. Let $\alpha \in (0,1]$. If A is (x^{α}) -porous at x_{α} ((x^{α})-strongly porous at x_{α}), then there is an open set G (x^{α}) -porous at x_{α} ((x^{α})-strongly porous at x_{α}), including $A \setminus \{x_{n}\}.$

THEOREM 1. The topologies T_{α} and τ_{α} are completely regular for each $\alpha \in (0,1]$.

Proof. We prove the theorem for ${\rm T}_{_{\rm C\!C}}$ (for $\tau_{_{\rm C\!C}}$ the proof is similar). Evidently, T_{α} is a Hausdorff space (because it is finer than the ρ -topology). Let H be a T_{α} -closed set and $x_0 \notin H$. This means that H is (x^{α}) -superporous at each point of X\H. Thus H is (x^{α}) -superporous at x_{α} and, obviously, \overline{H} is also (x^{α}) -superporous at x_{α} (\overline{H} denotes the closure of H in the ρ -topology). By Proposition 6, it follows that there is an open set G superporous at x_0 , including $\overline{H} \setminus \{x_0\}$. Put

$$f(x) = \begin{cases} 1; & x = x_{0}, \\ \frac{\text{dist } (x, \overline{H})}{\text{dist } (x, \overline{H}) + \text{dist } (x, X \setminus G)}; & x \neq x_{0}, \end{cases}$$

It is easy to see that f is ρ -continuous at each point $x \neq x_{\rho}$. By Proposition 2, $(X \setminus G) \cup \{x_0\}$ is a T_{α} -neighbourhood of x_0 .

Since f(x) = 1 for $x \in X \setminus G$, we conclude that f is T_{α} -continuous at x_{α} .

If (X,ρ) is a Baire space, then from Proposition 3 and Remark 1 it follows that T_{α} and τ_{α} are Baire spaces for all $\alpha \in (0,1]$. Thus Theorem D from [Z] implies that, under the above assumptions, a real function f is T_{α} -continuous (τ_{α} -continuous) if and only if it is T_{α}^{*} -continuous (τ_{α}^{*} -continuous). Therefore from Theorem 1 we get

THEOREM 2. Let (X,ρ) be a Baire space and $\alpha \in (0,1]$. Then $T_{\alpha}(\tau_{\alpha})$ is the coarsest topology for which all T_{α}^{\star} -continuous $(\tau_{\alpha}^{\star}$ -continuous) real functions are continuous.

References

- [Z] L. Zajiček, Porosity, I-density and abstract density topologies, Real Analysis Exchange 12 (1986-87), 313-326.
- [M] N.F.G. Martin, Generalized condensation points, Duke Math. J. 28 (1961), 507-514.
- [F] T. Filipczak, Topologies related to (x^{α}) -porosity, to appear.

Received November 7, 1989

291