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A note on topologies related to (xa)-porosity

Let (X,p) be a metric space. The open ball with the centre
z € X and radius r > 0 is denoted by B(z,r). Let M c X,
z€X and R > 0. Then we denote by y(z,R,M) the supremum of
the set of all r > 0 for which there exists y € X such that
B(y,r) c B(z,R) \ M.

Let o € (0,1]. 1If

a
lim sup z,R,M

R-+0+

)0'

we say that M is (xa)-porous at z. If a =1, then we
simply say that M is porous at z.
Let o € (0,1). 1If

lim sup z,R,M = o,

R+0+ R

we say that M is (xa)-strongly porous at z. If

lim sup z,R,M

R0+

we say that M 1is (x)-strongly porous at 2z, or simply,

strongly porous at z.
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PROPOSITION 1. Let o € (0,1]. If 2z is not an isolated
point of X and M is (xa)-porous at z ((xa)-strongly porous
at z), then M U {z} 1is also (xa)-porous at z ((xa)-strongly

porous at z).

Proof. If z €M, then the inclusion B(z,r )
B(z,R,) \ M impligs B(z ,r ) < B(z,R ) \ M \ {x}. Hence the
assertion holds.

If z ¢ M, then, for a sequence {zn} of points tending

to 2z, we put r_= p(z,zn) and Rn = Zrn. Then, for sufficient-

n

ly large n, we have B(z ,r ) c B(z,R)) \ M\ {x},
a

r r

n_ 1 n ®

R -3 and . for o € (0,1).

n-»>o

o}
o}

In ([F] the notions of (xa)-porosity and (xa,w)-porosity
((x,1)-porosity for a = 1) for subsets of the real line were
investigated. Proposition 1 guarantees that if X = R then those
notions are equivalent to our notions of (xa)-porosity and
(xa)-strong porosity.

We say that E ¢ X is (xa)-superporous at z if EUF
is (xa)-porous at z whenever F is (xa)-porous at z; E is
(xa)-strongly superporous at z if E U F is (xa)-strongly porous
at 2z whenever F is (xa)-strongly porous at z. E is said to
be (xa)-superporous ((xa)-strongly superporous) if it is (x%*)-
-superporous ((xa)-sfrongly superporous) at all its points.

A set Gc X is said to be (xa)-porosity open if X \ G is
(xa)-superporous at any point of G. The system of all sets which
are (xa)-superporous at a fixed point 2z forms an ideal. There-

fore the system of all (xa)-porosity open sets forms a topology.
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We call it the (xa)-porosity topology and denote by Ta. In
the same way we define (xa)-strong. porosity open sets and the
(x*)-strong . porosity topology - Tye

Obviously, all topologies Ta and T, are finer than the

p-topology of the metric space (X,p). Put

Ta {6\ P; G 1is Ta-open and P 1is a Ta-first

category set},

T; ={G\ P; G |is T,-open and P 1is a ra-first

category set}..

The systems T; and T; form topologies (see [M]). They are
called the (xa)*-porosity topology and the (xa)*-strong porosity
topqlogy.

The followipg propositions are analogous to Propositions 3-5
and Theorem 2 from Zaﬁzekb paper [2]. Their proofs are identical

with those in [2]. As usual, we assume that ao € (0,1], G c X

and z € X.

PROPOSITION 2. If 2z € G, then the following conditions
are equivalent:

(i) G is a ia-neighbourhood of 1z,

(ii) int G U {z} 1is a Ta-neighbourhood of 1z,

(iii) X \ 6 1is (xa)-superporous at z.

PROPOSITION 3. G is (xa)-porosity open if and only if
there are an open set H and some 2 c Fr H, such that G =

HU2Z and X \ H is (x%)-superporous at each point of 2.

286



PROPOSITION 4. If G is (x%)- porosity open, then

A\ int A is (xa)-superporous.

PROPOSITION 5. If (X,p) is a Baire space, then T; is

a category density topology on X, and

T& = {G\P; G is Ta-open and P 1is a p-first

category set}.

REMARK 1. Evidently, analogues of Propositions 2-5 for the

topologies Ta’T; and (xa)-strongly superporous sets are also

true .

. . * *
It is evident that Ta ; Ta and Ty g Ty for all a € (0,1].
In [F, Theorem 2 and 3] it was proved that if X = R, then no topo-
%* %*
logy from the collection U {Ta,r } (U {Ta,ra}) is in-
ae(oll] 35(0,1]
cluded in any other topology from this collection. Now,

a

we shall prove that all topologies Ta and T, are completely
regular. We start with some properties of (xa)-superporosity

and (xa)-strong superporosity.

PROPOSITION 6. Let a € (0,1]. If A is (xa)-superporous
at a point Xy then there is an open set G (xa)-superporous

at Xy including A \ {xo}.

Proof. We may assume that X, is not an isolated point

of X, and that A c B(xo,(%)a). Put

G = U B(x,p(x,xo)(°+1)/°).
xeA\{xo}

Let F be (xa)-porous at Xge We must show that G U F
is (xa)-porous at Xy- From the assumption it follows that

AUF is (xa)-porous at Xge Hence there are a positive num-
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ber ¢ and sequences of balls B(xn,rn), B(xo,Rn), such that

Rn tends decreasingly to 0 and

P
v
Q

(1) B(xn,rn) c B(xo'Rn) \A\F and

=}

for every n. Since

(a+l)/a

(2R_) 2R
n _ n a7 1l/a

T = [rn (2R )"] ;:;9 o,

there is a positive integer n, such that r > (ZRn)(a+l)/a

o
for n 2 no. Put

— _ (a+l)/a
S, = I'n (ZRn)

for ne n,. We shall show that

(2) B(xn,sn) c B(xo,Rn) \ G\ F.

Suppose the contrary, i.e. there is n 2 n, such that
B(xn,sn) NG# @. Let y € B(xn,sn) N G. Then

p(xn,y) < s., o(xo,Y) < Rp,

and there exists x € A \ {xo} such that

p(x,¥) < plx,x ) **D/e, p(x,,%) < (3)°.
Hence
Ry > 0(x,,¥) 2 p(x,,%) - p(x,¥) > p(x, 1 (**D) = p(x,y)
= p(x,y)( %/(1+a) - 1) > plx,y)( L 17 - 1)
p(x,y) p(x,x,)
2 p(x,y)
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and, consequently,

p(xn,x) s p(xn,y) + p(x,y) < s, * p(x,xo)(“+1)/a

S s+ (p(x,y) + p(Y,xo))(“+l)/a

r .

+ (ZRn)(a+1)/a =r

<Sn

This inequality contradicts condition (1) and thus proves

condition (2).

s
Evidently, since ;5 ——> 1, thus, for sufficiently large
n nh»=
n, we have
a
s
(3) §2 > c.
n
From (2) and (3) we conclude that G U F is (x“)-porous
at x_.

o

PROPOSITION 7. Let a € (0,1]. If A is (x%)-strongly
superporous at the point Xy then there is an open set G

(xa)-strongly superporous at x_, including A \ {x_}.
o} (o)

Proof. To prove this proposition, it is sufficient to
repeat the proof of Proposition 6, changing conditions (1) and

(3) only. If a € (0,1), then we replace these conditions by

a
r
- n
(17) B(xn,rn) c B(xo,Rn) \A\F and ﬁ; > n,
a
s
. 1
Rn 2

If a =1, then we put
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. ng1_ 1
(1”) B(xn,rn) c B(xo'Rn) \A\F and R >3 - o
s r
” _h__n_ i_1_ 1
(3") Rn = Rn 4Rn > 5 o 4Rn -1;*7 5

By a slight modification of the proof of Propositions 6

and 7 we get

PROPOSITION 8. Let o € (0,1]. If A is (xa)-porous at
X, ((xa)-strongly porous at xo), then there is an open set G

(x“)-porous at x ((xa)-strongly porous at xo), including

(o]
AN\ {x,}.

THEOREM 1. The topologies Ta and T, are completely

regular for each a € (0,1].

Proof. We prove the theorem for Ta (for Ty the
proof is similar). Evidently, Ta is a Hausdorff space (because
it is finer than the p-topology). Let H be a Ta-closed set
and X ¢ H. This means that H is (xa)-superporous at each

point of X\H. Thus H is (xa)-superporous at x and, ob-

(o}
viously, H is also (xa)-superporous at X, (H denotes the
closure of H in the p-topology). By Proposition 6, it fol-
lows that there is an open set G superporous at S includ-

ing H \ {x }. Put

dist (x,H) )
dist (x,H) + dist (x,X \ G)

It is easy to see that f is p-continuous at each point x# Xy.

By Proposition 2, (X \ G) U {xo} is a Ta-neighbourhood of Xg.
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Since f(x) =1 for x € X \ G, we conclude that f is T, -

-continuous at xo.

If (X,p) 1is a Baire space, then from Proposition 3 and Remark
it follows that T, and Tt are Baire spaces for all a € (0,1].
Thus Theorem D from [2] implies that, under the above assumptions,
a real function f is Ta-continuous (Ta-continuous) if and only
if it is T;-continuous (T;-continuous). Therefore from Theorem 1
we get

THEOREM 2. Let (X,p) be a Baire space and a € (0,1].
Then Ta (t.) 1is the coarsest topology for which all T&-

a
-continuous (ra-continuous) real-functions are coatinuous.
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