INROADS

Hong Yong Chol, Department of Mathematics, Chong Jin, First Teacher's College, Songpyong Guyok, ChonJin, Hamkyung Bukdo, Pyongyang, North Korea Władysław Wilczyński, Institute of Mathematics, Lódź University, 90-238 Lódź, Poland

Asymmetry of all Countable orders of a real function

Throughout this paper **R** will always denote the set of all real numbers: $\alpha, \beta, \gamma, \delta$ will stand for countable ordinal numbers greater or equal to one (If we use zero we shall state this fact explicitly.) and ω_1 , as usual, will be the first uncountable ordinal.

The notion of a local system was introduced in [2], p. 3. Among numerous examples of local systems presented there one can find three which are the simplest and simultaneously the most interesting for us: S_{∞} (page 4), S_{∞}^+ and S_{∞}^- . (Page 18 has indications how to define them.) We shall define three transfinite sequences of local systems: $\{S_{\infty}^{\alpha}\}_{1 \leq \alpha < \omega_1}$, $\{S_{\infty}^{\alpha+}\}_{1 \leq \alpha < \omega_1}$ and $\{S_{\infty}^{\alpha-}\}_{1 \leq \alpha < \omega_1}$ such that $S_{\infty}^1 = S_{\infty}^-$, $S_{\infty}^{1+} = S_{\infty}^+$ and $S_{\infty}^{1-} = S_{\infty}^-$. Recall that if $1 \leq \alpha < \omega_1$ and $A \subset \mathbb{R}$, then the derivative of A of order α (A^{α}) is defined in the following way (see [1], pp. 261-262): if $\alpha = 1$, then $A^{\alpha} = A^1 = \{x : x \text{ is a point of accumulation of } A\}$; if $\alpha > 1$ and $\alpha = \beta + 1$ for some β , then $A^{\alpha} = (A^{\beta})^1$; if α is a limit ordinal, then $A^{\alpha} = \bigcap_{1 \leq \beta < \alpha} A^{\beta}$. It is known that the derivative of an arbitrary set $A \subset \mathbb{R}$ and of an arbitrary order α , $1 \leq \alpha < \omega_1$ is a closed set and that: 1) for arbitrary $A \subset \mathbb{R}$ and $1 \leq \alpha_1 < \alpha_2 < \omega_1$ we have $A^{\alpha_1} \supset A^{\alpha_2}$; 2) for every $A \subset \mathbb{R}$ there exists $\alpha < \omega_1$ such that $A^{\alpha} = A^{\alpha+1}$. (Hence $A^{\alpha} = A^{\beta}$ for each β such that $\alpha \leq \beta < \omega_1$.)

Now let $S_{\infty}^{\alpha} = \{S_{\infty}^{\alpha}(x) : x \in \mathbb{R}\}$, where $S_{\infty}^{\alpha}(x)$ is the family of all sets $S \subset \mathbb{R}$ such that $x \in S$ and $x \in S^{\alpha}$. Similarly, let $S_{\infty}^{\alpha+} = \{S_{\infty}^{\alpha+}(x) : x \in \mathbb{R}\}$ ($S_{\infty}^{\alpha-} = \{S_{\infty}^{\alpha-}(x) : x \in \mathbb{R}\}$), where $S_{\infty}^{\alpha+}(x)$ ($S_{\infty}^{\alpha-}(x)$) is the family of all sets $S \subset \mathbb{R}$ such that $x \in S$ and $x \in (S \cap [x, +\infty))^{\alpha}$ (resp. $(S \cap (-\infty, x])^{\alpha}$).

We shall consider only bounded real functions of a real variable. Let $f : \mathbb{R} \to \mathbb{R}$ be such a function. We shall say that $y \in \mathbb{R}$ is a limit number of order α , $1 \leq \alpha < \omega_1$ of f at a point x if and only if y is a (S^{α}_{∞}) -limit number of f at x, i.e. if and only if for every $\varepsilon > 0$ we have $\{x\} \cup f^{-1}((y - \varepsilon, y + \varepsilon)) \in S^{\alpha}_{\infty}(x)$. Similarly we define right-hand (left-hand) limit numbers of order α of f at x using local system $S^{\alpha+}_{\infty}$ ($S^{\alpha-}_{\infty}$, respectively). The set of all limit numbers (right-hand, left-hand limit numbers, respectively) of order α of f at x will be denoted by $L^{\alpha}(f,x)$ ($L^{\alpha+}(f,x)$, $L^{\alpha-}(f,x)$, respectively). We shall say that $x \in \mathbb{R}$ is a point of asymmetry of a function f of order α if and only if $L^{\alpha+}(f,x) \neq L^{\alpha-}(f,x)$. The set of all points of asymmetry of f of order α will be denoted by $As^{\alpha}(f)$.

The aim of this paper is to characterize the family $\{As^{\alpha}(f)\}_{1 \leq \alpha < \omega_1}$ for the class of bounded functions, f.

THEOREM 1. For every bounded function $f : \mathbb{R} \to \mathbb{R}$ there exists α , $1 \leq \alpha < \omega_1$ such that $As^{\alpha}(f) = As^{\alpha+1}(f)$.

Proof. It suffices to show that there exists α , $1 \leq \alpha < \omega_1$ such that for every $x \in \mathbb{R}$ we have $L^{\alpha+}(f, x) = L^{(\alpha+1)+}(f, x)$ and $L^{\alpha-}(f, x) = L^{(\alpha+1)-}(f, x)$.

Observe first that $y \in L^{\alpha+}(f,x)$ $(y \in L^{\alpha-}(f,x), \text{ respectively})$ if and only if for every open interval I with rational endpoints such that $y \in I$ we have $x \in (f^{-1}(I) \cap [x, +\infty))^{\alpha}$ $(x \in (f^{-1}(I) \cap (-\infty, x])^{\alpha}, \text{ respectively})$. Let $\{I_1, I_2, \ldots, I_n, \ldots\}$ be a sequence of all intervals with rational endpoints. From property 2) of derivatives it follows that for each natural n there exists $\alpha_n, 1 \leq \alpha_n < \omega_1$ such that $(f^{-1}(I_n))^{\alpha_n} = (f^{-1}(I_n))^{\alpha_n+1}$. Fix $n \in N$ and consider a family of sets $\{f^{-1}(I_n) \cap [x, +\infty) : x \in R\}$. We shall show that for each $x \in \mathbb{R}$ $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n+1} = (f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n+2}$. Indeed, observe that $(f^{-1}(I_n))^{\alpha_n}$ is a perfect (possibly empty) set, because it is equal to its derivative. Observe also that if z > x, then $z \in (f^{-1}(I_n))^{\alpha_n}$ if and only if $z \in (f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n}$. Hence either $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n}$ is a perfect set and then $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n} = (f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n+1}$, or $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n}$ is a union of a perfect set and the singleton $\{x\}$ (which is isolated in $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n}$ and then $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n+1}$ is a perfect set. So, in both cases, the required equality holds for each $x \in \mathbb{R}$.

Obviously, the same reasoning gives $(f^{-1}(I_n) \cap (-\infty, x])^{\alpha_n+1} = (f^{-1}(I_n) \cap [x, +\infty))^{\alpha_n+2}$ for each $x \in \mathbb{R}$.

Let $\alpha < \omega_1$ be an ordinal number such that $\alpha_n + 1 < \alpha$ for each natural *n*. So we have $(f^{-1}(I_n) \cap [x, +\infty))^{\alpha} = f^{-1}(I_n) \cap [x, +\infty))^{\alpha+1}$ and $(f^{-1}(I_n) \cap (-\infty, x])^{\alpha} = (f^{-1}(I_n) \cap (-\infty, x])^{\alpha+1}$ for each $n \in N$ and each $x \in \mathbb{R}$. Hence $L^{\alpha+}(f, x) = L^{(\alpha+1)+}(f, x)$ and $L^{\alpha-}(f, x) = L^{(\alpha+1)-}(f, x)$ for each $x \in \mathbb{R}$, which completes the proof. **THEOREM 2.** For each bounded function $f : \mathbb{R} \to \mathbb{R}$ and for every α , $1 \leq \alpha < \omega_1$ the set $As^{\alpha}(f)$ is at most countable.

Proof. By virtue of Lemma 25.4 ([2], p. 59) the set $As^{\alpha}(f)$ is a subset of a set of the form

$$\bigcup_{n=1}^{\infty} \left(\operatorname{S}_{\infty}^{lpha +} \Delta \operatorname{S}_{\infty}^{lpha -}
ight) - \operatorname{der} \left[A_n
ight]$$

for some sequence of sets $\{A_n\}_{n\in\mathbb{N}}$. Here $(S) - \det[A] = \{x : \{x\} \cup A \in S(x)\}$ for a local system S and $A \subset \mathbb{R}$ (see [2], p. 50) and $(S_1 \Delta S_2) - \det[A] =$ $((S_1) - \det[A]) \Delta ((S_2) - \det[A])$ for two local systems S_1, S_2 and $A \subset \mathbb{R}$ (see [2], p. 57). So it is sufficient to prove that for an arbitrary set $A \subset \mathbb{R}$ and for each α , $1 \leq \alpha < \omega_1$ the set $((S^{\alpha+}) - \det[A])\Delta((S^{\alpha-}_{\infty}) - \det[A])$ is at most countable. We shall prove that $E_{\alpha} = ((S^{\alpha+}_{\infty}) - \det[A]) - ((S^{\alpha-}_{\infty}) - \det[A])$ is at most countable. (The proof for the second difference is similar.)

Observe first that $x \in (S_{\infty}^{\alpha+}) - \det[A]$ $(x \in (S_{\infty}^{\alpha-}) - \det[A])$ if and only if $x \in (A \cap [x, +\infty))^{\alpha}$ $(x \in (A \cap (-\infty, x])^{\alpha}$, respectively). Hence $E_{\alpha} = \{x \in \mathbb{R} : x \in (A \cap [x, +\infty))^{\alpha} - (A \cap (-\infty, x])^{\alpha}\}$. Suppose that E_{γ} is at most countable for all $\gamma < \alpha$. (This fact for $\gamma = 1$ is well-known.) If $\alpha = \beta + 1$ for some β , $1 \leq \beta < \omega_1$, then $x \in E_{\alpha}$ if and only if $x \in ((A \cap [x, +\infty))^{\beta})^1 - ((A \cap (-\infty, x])^{\beta})^1$. Then for $x \in E_{\alpha}$ there exists $\delta_x > 0$ such that $(x - \delta_x, x) \cap (A \cap (-\infty, x])^{\beta} = \emptyset$ while for every $\delta > 0$ $(x, x + \delta) \cap (A \cap [x, +\infty))^{\beta} \neq \emptyset$. So $\{(x - \delta_x, x) : x \in E_{\alpha}\}$ is a disjoint family. Hence E_{α} is at most countable. If α is a limit number, then it is nearly obvious that $E_{\alpha} \subset \bigcup_{\gamma < \alpha} E_{\gamma}$, so E_{α} is also at most countable. This completes the proof.

THEOREM 3. If $x \in As^{\alpha}(f)$ and α is a limit ordinal, then there exists $\beta_0 < \alpha$ such that β_0 has a predecessor and $x \in \bigcap_{\beta_0 \leq \gamma \leq \alpha} As^{\gamma}(f)$. If $\beta_0 > 1$ and $\beta_0 = \delta + 1$, then $x \notin As^{\delta}(f)$.

Proof. Suppose that $L^{\alpha+}(f, x) - L^{\alpha-}(f, x) \neq \emptyset$. (The proof in the remaining case is similar.) Then there exists $y \in L^{\alpha+}(f, x) - L^{\alpha-}(f, x)$. Hence for every $\varepsilon > 0$ $x \in (f^{-1}((y - \varepsilon, y + \varepsilon)) \cap [x, +\infty))^{\alpha}$ and there exists $\varepsilon_0 > 0$ such that $x \notin (f^{-1}((y - \varepsilon_0, y + \varepsilon_0)) \cap (-\infty, x])^{\alpha}$. Then, according to the definition of the derivative of order α , there exists $\beta < \alpha$ such that $x \notin (f^{-1}((y - \varepsilon_0, y + \varepsilon_0)) \cap (-\infty, x])^{\alpha}$. Then, according to the definition of the derivative of order α , there exists $\beta < \alpha$ such that $x \notin (f^{-1}((y - \varepsilon_0, y + \varepsilon_0)) \cap (-\infty, x])^{\beta}$. Hence, by virtue of property 1) of derivatives, $x \notin (f^{-1}((y - \varepsilon_0, y + \varepsilon_0)) \cap (-\infty, x])^{\gamma}$ for every γ , $\beta \leq \gamma \leq \alpha$. Likewise (again according to the definition of the derivative of order α) $x \in (f^{-1}((y - \varepsilon, y + \varepsilon)) \cap [x, +\infty))^{\gamma}$ for every $\varepsilon > 0$ and for $\beta \leq \gamma \leq \alpha$. Hence $x \in \bigcap_{\beta \leq \gamma \leq \alpha} As^{\gamma}(f)$. Let β_0 be the smallest ordinal number for which the last relation holds. If β_0 were a limit ordinal, the reasoning can be repeated resulting in $\beta < \beta_0$ for which again the relation holds.

So β_0 has a predecessor. The rest follows immediately.

Now we shall show that the conditions described in Theorems 1, 2 and 3 give the characterization of the family $\{As^{\alpha}(f)\}_{1 \leq \alpha < \omega_1}$ for bounded functions. We shall only slightly modify the formulation of the last condition.

THEOREM 4. If $\{E_{\alpha}\}_{1 \leq \alpha < \omega_1}$ is a family of sets of real numbers satisfying the following conditions:

- 1. there exists α_0 , $1 \leq \alpha_0 < \omega_1$ such that $E_{\alpha} = E_{\alpha_0}$ for each α , $\alpha_0 \leq \alpha < \omega_1$;
- 2. for each α , $1 \leq \alpha < \omega_1$ the set E_{α} is at most countable;
- 3. if $\alpha \leq \alpha_0$ is a limit ordinal and $x \in E_{\alpha}$, then there exists $\gamma_{\alpha} < \alpha$ such that $x \notin E_{\gamma_{\alpha}}$ (if $\gamma_{\alpha} = 0$, put $E_0 = \emptyset$) and $x \in \bigcap_{\gamma_{\alpha} < \gamma \leq \alpha} E_{\gamma}$,

then there exists a bounded function $f : \mathbb{R} \to \mathbb{R}$ such that $E_{\alpha} = As^{\alpha}(f)$ for each $\alpha, 1 \leq \alpha < \omega_1$.

Proof. Before constructing the function f, we begin with some special partitions of sets of ordinal numbers associated with points from $\bigcup_{1 \leq \alpha < \omega_1} E_{\alpha}$. Let $x \in \bigcup_{1 \leq \alpha < \omega_1} E_a (= \bigcup_{1 \leq \alpha \leq \alpha_0} E_{\alpha})$. Put $H(x) = \{\alpha \leq \alpha_0 : x \in E_{\alpha}\}$. Let $G(x) = \{\alpha \in H(x) : \alpha \text{ is a limit ordinal}\}$. Both H(x) and G(x) are at most countable. Let $G(x) = \{\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots\}$. By virture of condition 3 for each $n \in N$ there exists $\gamma \alpha_n < \alpha_n$. We shall construct a sequence of left-open intervals of ordinal numbers. Put $P_1(x) = \{\gamma : \gamma_{\alpha_1} < \gamma \leq \alpha_1\}$. Obviously $P_1(x) \subset H(x)$. Suppose that we have already found disjoint intervals $P_1(x), P_2(x), \ldots, P_{n-1}(x)$. If $\alpha_n \in \bigcup_{i=1}^{n-1} P_i(x)$, then we put $P_n(x) = \emptyset$. If not, then let $\alpha_{i_1}, \ldots, \alpha_{i_k}$ be all ordinals among $\alpha_n, \ldots, \alpha_{n-1}$ which are smaller than α_n (if there are some) and put

$$P_n(x) = \{\gamma : \max(\gamma_{\alpha_n}, \alpha_{i_1}, \ldots, \alpha_{i_k}) < \gamma \leq \alpha_n\}.$$

We have $P_n(x) \subset H(x)$ and $P_n(x) \cap P_i(x) = \emptyset$ for i < n. By induction we have defined a disjoint sequence $\{P_n(x)\}_{n \in N}$ of left-open intervals included in H(x). Consider the set $H(x) - \bigcup_n P_n(x)$. This set is also at most countable, say $H(x) - \bigcup_n P_n(x) = \{\beta_1, \beta_2, \ldots, \beta_n, \ldots\}$. To unify the rest of the construction we shall artificially represent each singleton $\{\beta_n\}$ as a left-open interval. Observe first that each β_n has a predecessor, $\beta_n = \gamma_n + 1$. So $Q_n(x) = \{\beta_n\} = \{\gamma :$ $\gamma_n < \gamma \leq \beta_n\}$. Finally let $R_{2n-1}(x) = P_n(x), R_{2n}(x) = Q_n(x)$ for natural n. (If the family of nonempty P_n 's or Q_n 's is finite, we make the obvious change.) With each $x \in \bigcup_{1 \leq \alpha \leq \alpha_0} E_{\alpha}$ we have associated a disjoint sequence of left-open nonempty intervals $\{R_n(x)\}_{n \in N}$ such that $H(x) = \bigcup_n R_n(x)$.

By virtue of condition 2 the set $\bigcup_{1 \leq \alpha \leq \alpha_0} E_{\alpha}$ is at most countable. So the set of all ordered pairs t = (x, R), where $x \in \bigcup_{1 \leq \alpha \leq \alpha_0} E_{\alpha}$ and R is the interval

associated with x is at most countable. Let $\{t_1, t_2, \ldots, t_n, \ldots\}$ be a sequence consisting of all ordered pairs described above.

We shall need some lemmas:

LEMMA 1. Let $x_0 \in \mathbb{R}$, let β_0, β_1 be countable ordinals such that $0 \leq \beta_0 < \beta_1 < \omega_1$ and let $X \subset \mathbb{R}$ be an arbitrary countable set. There exists a countable set $F \subset \mathbb{R} - X$ such that for $h = \chi_F$ (the characteristic function of F) we have $As^{\beta}(h) = \{x_0\}$ for $\beta_0 < \beta \leq \beta_1$ and $As^{\beta}(h) = \emptyset$ for $1 \leq \beta \leq \beta_0$ and for $\beta > \beta_1$.

Proof. First we construct a set $F^+ \subset [x_0, +\infty)$ fulfilling the following conditions: F^+ is a closed countable set, $x_0 \in F^+$, $(F^+ - \{x_0\}) \cap X = \emptyset$ and $As^{\beta}(\chi_{F^+} = \{x_0\} \text{ for } 1 \leq \beta \leq \beta_1, As^{\beta}(\chi_{F^+}) = \emptyset \text{ for } \beta_1 < \beta < \omega_1$. More precisely, we shall have for $1 \leq \beta \leq \beta_1$

(1) $L^{\beta}(\chi_{F^+}, x) = L^{\beta_+}(\chi_{F^+}, x) = L^{\beta_-}(\chi_{F^+}, x) = \{0\}$ for $x \notin F^+$,

$$(2) \ L^{\beta-}(\chi_{F^+},x_0)=\{0\}, \ \ L^{\beta+}(\chi_{F^+},x_0)=\{0,1\},$$

(3) $L^{\beta-}(\chi_{F^+}, x) = L^{\beta+}(\chi_{F^+}, x) = \{0, 1\}$ for $x \in (F^+)^1 - \{x_0\},$

(4)
$$L^{\beta-}(\chi_{F^+}, x) = L^{\beta+}(\chi_{F^+}, x) = \{0\}$$
 for x isolated in F^+ ,

and for $\beta > \beta_1$ the only limit number (right-hand, left-hand limit number) of order β will be zero. For $\beta_1 = 1$ it suffices to take $F^+ = \{x_0, x_1, x_2, \ldots\}$, where the sequence $\{x_n\}_{n \in \mathbb{N}}$ is strictly decreasing, convergent to x_0 and none of its elements belong to X.

Suppose now that for every $x \in \mathbb{R}$ and an arbitrary ordinal γ , $1 \leq \gamma < \beta_1$, we can build a set with all the required properties and sufficiently small, i.e. included in a prescribed right-hand neighborhood of X. (This condition is not difficult to obtain.)

If $\beta_1 = \gamma + 1$, then let $\{x_n\}_{n \in N}$ be a decreasing sequence converging to x_0 and disjoint from X. Let F_n^+ be a set constructed for x_n and γ such that $F_n^+ \subset [x_n, x_n + \varepsilon_n)$, where the sequence $\{\varepsilon_n\}_{n \in N}$ is sufficiently small, that is $(x_n - \varepsilon_n, x_n + \varepsilon_n) \cap (x_{n+1} - \varepsilon_{n+1}, x_{n+1} + \varepsilon_{n+1}) = \emptyset$ for arbitrary $n \in N$. Moreover, each F_n^+ should be disjoint from X and, additionally $F_n^+ \cap (2x_n - X) = \emptyset$. (Here a - X means the set $\{a - x : x \in X\}$.) Obviously for countable X the set a - X is also countable.

Put $F_n^- = 2x_n - F_n^+$. We have $F_n^- \cap X = \emptyset$. Finally let $F^+ = \bigcup_{n \in N} (F_n^+ \cup F_n^-) \cup \{x_0\}$. It is not difficult to verify that F^+ fulfills all requirements.

If β_1 is a limit ordinal, then first we construct an increasing sequence $\{\gamma_n\}_{n \in N}$ of ordinals converging to β_1 ; then a decreasing sequence $\{x_n\}_{n \in N}$ converging to

 x_0 and disjoint from X and then for each $n F_n^+$ is constructed for x_n and γ_n . The rest of the construction is without changes.

Now, if $\beta_0 = 0$, we put $K^- = \emptyset$. If $\beta_0 > 0$, then similarly as before we construct a set K^+ for x_0 and β_0 included in $[x_0, +\infty)$, disjoint from $(2x_0 - X)$. Finally we put $F = F^+ \cup (2x_0 - K^+) - \{x_0\}$.

The above set F fulfills all the conditions.

LEMMA 2. Let $x_0 \in \mathbb{R}$, and let β_0 be a countable ordinal greater or equal to 0 and let $X \subset \mathbb{R}$ be an arbitrary countable set. There exists a countable set $F \subset \mathbb{R} - X$ such that for $h = \chi_F$ we have $As^{\beta}(h) = \{x_0\}$ for $\beta_0 < \beta < \omega_1$ and $As^{\beta}(h) = \emptyset$ for $1 \leq \beta \leq \beta_0$.

Proof. Put $\beta_1 = \beta_0 + 1$. Let F_0 be a set constructed for x_0 , β_0 and β_1 (from Lemma 1). Put $F = F_0 \cup G$, where $G \subset (\mathbb{R} - X) \cap (x_0, +\infty)$ is an arbitrary countable set dense in $(x_0, +\infty)$. The set F fulfills all the requirements.

Now we proceed to the construction of f:

Consider the pair $t_1 = (x, R)$. If $\alpha_0 \notin R$ (α_0 from condition 1), and $R = \{\gamma : \beta_0 < \gamma \leq \beta_1\}$, then, using Lemma 1, we construct the set F_1 for x, β_0, β_1 and $X = \bigcup_{1 \leq \alpha \leq \alpha_0} E_{\alpha}$ and put $f_1 = \chi_{F_1}$. If $\alpha_0 \in R$, then, using Lemma 2, we construct the set F_1 for x, β_0 and $X = \bigcup_{1 \leq \alpha \leq \alpha_0} E_{\alpha}$ and again put $f_1 = \chi_{F_1}$.

Suppose that for t_1, \ldots, t_{n-1} we have already found F_1, \ldots, F_{n-1} and hence f_1, \ldots, f_{n-1} . Consider $t_n = (x, R)$. If $R = \{\gamma : \beta_0 < \gamma \leq \beta_1\}$ and $\beta_1 < \alpha_0$, then we use Lemma 1 for x, β_0, β_1 and $X = \bigcup_{i=1}^{n-1} F_i \cup \bigcup_{1 \leq \alpha \leq \alpha_0} E_\alpha$ to find F_n . If $\beta_1 = \alpha_0$, we use Lemma 2 for x, β_0 and $X = \bigcup_{i=1}^{n-1} F_i \cup \bigcup_{1 \leq \alpha \leq \alpha_0} E_\alpha$ to find F_n . Next we put $f_n = \chi_{F_n}$.

So, by induction, we have defined a sequence of countable and disjoint sets $\{F_n\}_{n\in N}$ and a sequence of functions $\{f_n\}_{n\in N}$. Finally put $f = \sum_n \frac{1}{n} f_n$. The function f fulfills all the requirements.

References

- [1] K. Kuratowski, Topology, Vol. I, Academic Press 1966.
- [2] B. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer-Verlag 1985.

Received October 27, 1989