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 Asymmetry of all Countable orders of a real
 function

 Throughout this paper R will always denote the set of all real numbers:
 a, /5,7,5 will stand for countable ordinal numbers greater or equal to one (If
 we use zero we shall state this fact explicitely.) and as usual, will be the first
 uncountable ordinal.

 The notion of a local system was introduced in [2], p. 3. Among numerous
 examples of local systems presented there one can find three which are the sim-
 plest and simultaneously the most interesting for us: (page 4), and S^.
 (Page 18 has indications how to define them.) We shall define three transfinite
 sequences of local systems: {SJJigacuj, {S^"}i<a<wi and {S^_}i<a<wi such that
 ^oo = Soo, = S+ and S^" = S~ . Recall that if 1 ^ a < wi and A C R, then
 the derivative of A of order a ( Aa ) is defined in the following way (see [l], pp.
 261-262): if a = 1, then Aa = A1 = {x : x is a point of accumulation of A}; if
 a > 1 and a = ß + 1 for some ß , then A" = (A^)1; if a is a limit ordinal, then
 Aa = rii<0<a A? • It is known that the derivative of an arbitrary set A C R and
 of an arbitrary order a, 1 ^ a < is a closed set and that: 1) for arbitrary
 A C R and 1 ^ ai < ocļ < wi we have Aai D Aa ł; 2) for every A C R there exists
 a < Ui such that Aa = Aa+1. (Hence Aa = A ^ for each ß such that a ^ ß < wj.)

 Now let = {S£(x) : x G R}, where S¿(x) is the family of all sets S C R
 such that x G 5" and x G Sa. Similarly, let S^1" = {S£+(x) : x € R} (S£,~ =
 {•$<£," (x) : x € R}), where S¿+(x) (S¿~ (x)) is the family of all sets S C R such
 that x G 5 and x G (5 n [x, +oo))a (resp. (S fi (- oo,x])a).

 We shall consider only bounded real functions of a real variable. Let / : R - ► R
 be such a function. We shall say that y G R is a limit number of order a,
 1 ^ a < of / at a point x if and only if y is a (S^)-limit number of / at x, i.e.
 if and only if for every e > 0 we have {x} U /- 1 ((y - e, y + e)) G S£(x). Similarly
 we define right-hand (left-hand) limit numbers of order a of / at x using local
 system S£>+ (S^~, respectively).
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 The set of all limit numbers (right-hand, left-hand limit numbers, respectively) of
 order a of / at x will be denoted by La (/, x) ( La+ (/, x) , La~ (/, x) , respectively) .
 We shall say that x G R is a point of asymmetry of a function / of order a if and
 only if La+(f , x) ^ La~(f,x). The set of all points of asymmetry of / of order a
 will be denoted by Asa(f).

 The aim of this paper is to characterize the family {Asa(/)}i<a<Wl for the
 class of bounded functions, /.

 THEOREM 1. For every bounded function / : R - ► R there exists a,
 1 ^ a < such that Asa(f) - Asa+1(f).

 Proof. It suffices to show that there exists a, 1 ^ a < such that for every
 x G R we have La+(f,x ) = L^a+1^+(f,x) and La~(f,x) = x).

 Observe first that y G La+(f,x) (y G La~(f,x), respectively) if and only if
 for every open interval I with rational endpoints such that y G I we have x G
 (/_1(/) n [x, +oo))a (x G (/-1(/) n (-oo,x])a, respectively). Let
 . . .} be a sequence of all intervals with rational endpoints. From property 2)
 of derivatives it follows that for each natural n there exists an, 1 < a„ < u>i
 such that (/~1(-/n))an = (/_1(Jn))a"+1- Fix n G N and consider a family of sets
 {/_1(/n) fi [x, +oo) : x G R}. We shall show that for each x G R (/-1(/n) n
 [x, +oo))a"+1 = (/_1(/n) H [x, +oo))a"+2. Indeed, observe that (f~1{In))an is a
 perfect (possibly empty) set, because it is equal to its derivative. Observe also
 that if z > x, then z G {f~1[In))an if and only if z G (/-1(/n)n[x, +oo))a,' Hence
 either (/-1(/n) D [x, +oo))ot,, is a perfect set and then (/_1(/n) fl [x, +oo))a,n =
 (/-1(/„) n [x, +oo))a"+1, or (/_1(/n) fl [x, +oo))a" is a union of a perfect set and
 the singleton {x} (which is isolated in (/-1(/„) fl [x, +oo))an) and then (/_1(/n)n
 [x, +oo))a"+1 is a perfect set. So, in both cases, the required equality holds for
 each x G R.

 Obviously, the same reasoning gives (/-1(Jn) fl (- oo, x])an+1 = (/-1(/n) fl
 [x, +oo))an+2 for each x G R.

 Let a < «! be an ordinal number such that an + 1 < a for each natural
 n. So we have (/-1(Jn) n [x, +oo))a = /_1(/n) H [x, +oo))a+1 and (/-1(/n) D
 (- oo,x])a = (/-1(/n) n (- oo,x])a+1 for each n G N and each x G R. Hence
 La+(f,x) = L(a+1)+(f,x) and La~(f,x) = LÍ°l+1^"(/,x) for each x G R, which
 completes the proof.
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 THEOREM 2. For each bounded function / : R - ► R and for every a,
 1 ^ a < Ui the set Asa(f) is at most countable.

 Proof. By virtue of Lemma 25.4 ([2], p. 59) the set Asa(f) is a subset of a
 set of the form

 (J(S»+AS»-)-der[A„|
 n=l

 for some sequence of sets {An}nejv. Here (S) - der [A] = {x : {x} U AG S (x)}
 for a local system S and A C R (see [2], p. 50) and (Sļ AS2) - der [A] =
 ((Si) - der [A]) A ((S2) - der [A]) for two local systems Sļ,S2 and A C R (see [2],
 p. 57). So it is sufficient to prove that for an arbitrary set A C R and for each a,
 1 ^ a < ui the set ((Sa+) - der [A]) A((S£,~ ) - der [A]) is at most countable. We
 shall prove that Ea = ((S£,+) - der [A]) - ((S£>_) - der [A]) is at most countable.
 (The proof for the second difference is similar.)

 Observe first that x G (S^1" ) - der [A] (x G (S£,~ ) - der [A]) if and only if
 x € (AD [x, +oo))a (x G (An (- oo,x])a, respectively). Hence Ea = {x G R : x G
 (A n [x, +oo))a - (An (- oo,x])a}. Suppose that E 7 is at most countable for all
 7 < a. (This fact for 7 = 1 is well-known.) If a = ß + 1 for some ß, 1 ^ ß < u>i,
 then x G Ea if and only if x G ((A D [x, +oo))^)x - ((A D (- 00, x])^)1. Then for
 x € Ea there exists 6X > 0 such that (x - 6x,x) fl (A D (- 00, x])^ = 0 while for
 every S > 0 (x, x + 6) fi (A fl [x, +oo))/5 7^ 0. So {(x - 6X, x) : x G Ea} is a disjoint
 family. Hence Ea is at most countable. If a is a limit number, then it is nearly
 obvious that Ea C U1<a ■E'-p so Ea is also at most countable. This completes the
 proof.

 THEOREM 3. If x G Asa(f) and a is a limit ordinal, then there exists
 ßo < a such that ß0 has a predecessor and x G fl^0 <i<aAs'1(f). If ßo > 1 and
 ßo = 6 + 1, then x £ Ass(f).

 Proof. Suppose that La+(f, x) - La~(f,x) ý 0* (The proof in the remaining
 case is similar.) Then there exists y G La+(f,x) - La~ (/, x). Hence for every
 e > 0 x G (/-1((y - e, y + e)) n [x, +oo))a and there exists e0 > 0 such that
 x (/-1((y - eo, y + So)) H (- oo,x])a. Then, according to the definition of the
 derivative of order a, there exists ß < a such that x & (/_1((y - £0 ,y + £0)) n
 (- 00, x])'®. Hence, by virtue of property 1) of derivatives, x ^ (/-1((y - £o>y +
 £0)) H (- 00, x])"" for every 7, ß Ú 7 ^ a. Likewise (again according to the
 definition of the derivative of order a) x G (/-1((y - e, y + e)) n [x, +00))"" for
 every e > 0 and for ß < 7 < a. Hence x G n^<7<a As^/). Let ß0 be the smallest
 ordinal number for which the last relation holds. If ß0 were a limit ordinal, the
 reasoning can be repeated resulting in ß < ß0 for which again the relation holds.
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 So ß0 has a predecessor. The rest follows immediately.
 Now we shall show that the conditions described in Theorems 1, 2 and 3 give

 the characterization of the family {.Asa(/)}i^a<Wl for bounded functions. We
 shall only slightly modify the formulation of the last condition.

 THEOREM 4. If {£'a}i^a<wi is a family of sets of real numbers satisfying
 the following conditions:

 1. there exists a0, 1 < a0 < <^i such that Ea = Eao for each a, a0 ^ a <

 2. for each a, 1 ^ a < Uļ the set Ea is at most countable;

 3. if a < ao is a limit ordinal and x € Ea, then there exists 7a < a such that
 X Ela (if 7 a = 0, put E0 = 0) and x € [%„<.,<«

 then there exists a bounded function / : R - ► R such that Ea = Asa(f) for each
 a, 1 ^ a < wj.

 Proof. Before constructing the function /, we begin with some special
 partitions of sets of ordinal numbers associated with points from Ui<a<U)1 Ea-
 Let x € Ui<c<u nEa{= Uiia<aoE<*)- Put H(x) = {a Ś üo : i G Ēa}. Let
 G(x) = {a E H(x) : a is a limit ordinal}. Both H(x) and G(x) are at most
 countable. Let G(x) = {<*1, a2, . . . ,an, . . .}. By virture of condition 3 for each
 n 6 N there exists qan < an. We shall construct a sequence of left-open intervals
 of ordinal numbers. Put Pi(x) = {7 : 7a, < 1 = «i}- Obviously Pi(x) C H(x).
 Suppose that we have already found disjoint intervals Pi(x), Pi{x) , . . . ,
 If an 6 [X^Piix), then we put Pn(x) = 0. If not, then let a$1, . . . , a,t be all
 ordinals among an, which are smaller than an (if there are some) and
 put

 PÁX ) = il '• maxfra,,.«.-,, •••,<*.-*) < 7 ^ «n}-

 We have Pn{x) C H(x) and Pn{x) D Pi(x) - 0 for i < n. By induction we
 have defined a disjoint sequence {Pn(x)}ne^ of left-open intervals included in
 H(x). Consider the set H(x) - UnPn(a:)- This set is also at most countable, say
 H(x) - Un Pn{x) = {ßi,ßi, • • • ,ßn, • • •}• To unify the rest of the construction we
 shall artificially represent each singleton {/?„} as a left-open interval. Observe
 first that each ßn has a predecessor, ßn = 7n + 1. So Qn(x ) = {ßn} = {7 :
 7n < 7 = ßn}- Finally let i?2n-i(^) = Pn{x), R2n{x) = Qn{x) for natural n.
 (If the family of nonempty Pn's or Q„'s is finite, we make the obvious change.)
 With each x G Ui<a<a0 Ea we have associated a disjoint sequence of left-open
 nonempty intervals {Rn(x)}neN such that H(x) = Un Rn{x).

 By virtue of condition 2 the set Ui<a<a0 E<* IS m°st countable. So the
 set of all ordered pairs t = (x, iř), where x G Ui<a<a0 and R is the interval
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 associated with x is at most countable. Let be a sequence
 consisting of all ordered pairs described above.

 We shall need some lemmas:

 LEMMA 1. Let xq € R, let ßo,ßi be countable ordinals such that 0 ^ ßo <
 ßi < u>i and let X C R be an arbitrary countable set. There exists a countable
 set F C R - X such that for h - xf (the characteristic function of F) we have
 Asß(h ) = {x0} for ß0 < ß ^ ßi and Asß(h) = 0 for 1 ß ^ ßo and for ß > ßi.

 Proof. First we construct a set F+ C [x0, +oo) fulfilling the following con-
 ditions: F+ is a closed countable set, x0 G F+, (F+ - {x0}) fi X = 0 and
 Asß(xF+ = {®o} for 1 ^ ß ^ ßi, .As/î(xf+) = 0 f°r ßi < ß < Wi. More precisely,
 we shall have for 1 ^ ß ^ ßi

 (1) £"(Xf+,*) = Lß+(xF+,x) = Lß~(xF+,x) = {0} for x£F+,

 (2) I/-{xf+,X0) = {0}, Lß+(xF+,Xo) = {0,1},

 (3) I/~{xf+,x) = Lß+(xF+,x) = {0,1} for x e (-F+)1 - {x0},

 (4) l/~ (xf+ìx) = Lß+(xp+>x) = {0} for x isolated in F+,

 and for ß > ß' the only limit number (right-hand, left-hand limit number) of
 order ß will be zero. For ß' = 1 it suffices to take F+ = {xo, xi, X2, • • •}, where
 the sequence {x„}n€^ is strictly decreasing, convergent to xo and none of its
 elements belong to X.

 Suppose now that for every x 6 R and an arbitrary ordinal 7, 1 ^ 7 < ßi,
 we can build a set with all the required properties and sufficiently small, i.e.
 included in a prescribed right-hand neighborhood of X. (This condition is not
 difficult to obtain.)

 If /?i =7 + 1, then let {xn}ne# be a decreasing sequence converging to x0
 and disjoint from X. Let F+ be a set constructed for xn and 7 such that F+ C
 [xn, xn+en), where the sequence {en}neAr is sufficiently small, that is (xn- en, xn+
 €n) H (xn+i - en+i,xn+i + en+i) = 0 for arbitrary n G N. Moreover, each F*
 should be disjoint from X and, additionally F+ fi (2x„ - X) = 0. (Here a - X
 means the set {a - x : x G X}.) Obviously for countable X the set a - X is also
 countable.

 Put F~ = 2xn - F+. We have F~ fi X = 0. Finally let F+ = IW(F„+ u
 Fn ) U {xo}. It is not difficult to verify that F+ fulfills all requirements.

 If ßi is a limit ordinal, then first we construct an increasing sequence {7n}new
 of ordinals converging to ßi' then a decreasing sequence {xn}ne^r converging to
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 xq and disjoint from X and then for each n is constructed for xn and -yn. The
 rest of the construction is without changes.

 Now, if ß0 = 0, we put K~ = 0. If ß0 > 0, then similarly as before we
 construct a set K+ for x0 and ßo included in [xo,+oo), disjoint from (2x0 - X).
 Finally we put F = F+ U (2xo - K+) - {xo}.

 The above set F fulfills all the conditions.

 LEMMA 2. Let x0 E R, and let ß0 be a countable ordinal greater or equal
 to 0 and let X C R be an arbitrary countable set. There exists a countable set
 F C R - X such that for h = xf we have As^(h) = {xo} for ßo < ß < u>' and
 As^(h) = 0 for 1 ^ ß ^ ßo.

 Proof. Put ßi - ßo + 1. Let F0 be a set constructed for xo, ßo and ßi (from
 Lemma 1). Put F = F0 U G, where G C (R - X) D (xo,+oo) is an arbitrary
 countable set dense in (x0,+oo). The set F fulfills all the requirements.

 Now we proceed to the construction of / :
 Consider the pair ii = (x, R). If ao £ R (ao from condition 1), and R =

 {7 : ßo < 7 < ßi}, then, using Lemma 1, we construct the set F' for x,ß0,ßi
 and X = Ui<c<a0 an<^ Put fx - X*v If a0 € R, then, using Lemma 2, we
 construct the set F' for x, ß0 and X = Ui<a<a0 E* and again put /1 = Xf¡ •

 Suppose that for ii, . . . ,řn-i we have already found Fi, . . . , Fn- 1 and hence
 Consider tn = (x,iř). If R = {7 : ß0 < 7 Ú ßi} and ßl < «o,

 then we use Lemma 1 for x,ß0,ßi and X = U^i1 u Ui<a<a0 E<* find Fn. If
 ßi = <*o, we use Lemma 2 for x, ßo and X = U^i1 R U Ui<a<a0 E<* to find Fn.
 Next we put fn = xf„-

 So, by induction, we have defined a sequence of countable and disjoint sets

 {Fn}neN and a seqence of functions {fn}neN- Finally put / = I2n^/n- The
 function / fulfills all the requirements.
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