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Asymmetry of all Countable orders of a real
function

Throughout this paper R will always denote the set of all real numbers:
a,3,~,6 will stand for countable ordinal numbers greater or equal to one (If
we use zero we shall state this fact explicitely.) and w;, as usual, will be the first
uncountable ordinal.

The notion of a local system was introduced in [2], p. 3. Among numerous
examples of local systems presented there one can find three which are the sim-
plest and simultaneously the most interesting for us: S, (page 4), S}, and S_.
(Page 18 has indications how to define them.) We shall define three transfinite
sequences of local systems: {S% }1<a<w,r {S% }1ga<w, and {S% }i<a<w, such that
Sy, = Se, SIF =St and S); =S_. Recall that if 1 £ @ < w; and A C R, then
the derivative of A of order a (A®) is defined in the following way (see (1], pp.
261-262): if @ = 1, then A* = A! = {z : z is a point of accumulation of A}; if
a > 1 and a = 8 + 1 for some B, then A* = (AP)}; if e is a limit ordinal, then
A% = Mi<p<a AP. Tt is known that the derivative of an arbitrary set A C R and
of an arbitrary order @, 1 £ a < w; is a closed set and that: 1) for arbitrary
ACRand1 £ o < a3 < w; we have A™ D A%3; 2) for every A C R there exists
a < w; such that 4% = A**!, (Hence A® = AP for each B such that o £ § < w;.)

Now let S = {82 (z) : z € R}, where $2(z) is the family of all sets S C R
such that z € S and £ € S°®. Similarly, let S&f = {$2%(z) : z € R} (8% =
{8& (z) : = € R}), where $2*(z) ($& (z)) is the family of all sets S C R such
that z € S and z € (S N [z,+00))* (resp. (S N (—o0,z])?).

We shall consider only bounded real functions of a real variable. Let f : R = R
be such a function. We shall say that y € R is a limit number of order a,
1< a < w;of fatapoint z if and only if y is a (5% )-limit number of f at z, i.e.
if and only if for every € > 0 we have {z} U f~!((y — €,y +¢€)) € $&(z). Similarly
we define right-hand (left-hand) limit numbers of order a of f at z using local
system SZF (S, respectively).
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The set of all limit numbers (right-hand, left-hand limit numbers, respectively) of
order a of f at z will be denoted by L*(f, z) (L**(f,z), L*~(f, z), respectively).
We shall say that z € R is a point of asymmetry of a function f of order « if and
only if L**(f,z) # L* (f,z). The set of all points of asymmetry of f of order «
will be denoted by As*(f).

The aim of this paper is to characterize the family {As*(f)}1<a<w, for the
class of bounded functions, f.

THEOREM 1. For every bounded function f : R — R there exists «,
1 £ a < w; such that As*(f) = As**I(f).

Proof. It suffices to show that there exists a, 1 £ a < w; such that for every
z € R we have L**(f,z) = LotV (f,z) and L*~(f,z) = L+~ (f,z).

Observe first that y € L**(f,z) (y € L*~(f,z), respectively) if and only if
for every open interval I with rational endpoints such that y € I we have z €
(f~YI) N [z,+00))* (z € (f71(I) N (—o0,z])*, respectively). Let {I1,Is,...,I,,
...} be a sequence of all intervals with rational endpoints. From property 2)
of derivatives it follows that for each natural n there exists a,, 1 < a, < w;
such that (f~!(1,))* = (f~!(I,))**!. Fix n € N and consider a family of sets
{f~Y(I,) N [z,+00) : z € R}. We shall show that for each z € R (f~1(I,) N
[z,+00))* ! = (f~Y(I.) N [z,+00))***2. Indeed, observe that (f~!(I.))*" is a
perfect (possibly empty) set, because it is equal to its derivative. Observe also
that if 2 > z, then z € (f~!(I,))*" if and only if 2z € (f~!(I,) N[z, +00))*". Hence
either (f~!(1,) N [z,+00))*" is a perfect set and then (f~!(I,) N [z,+00))*" =
(f7Y(In) N[z, +00))**1, or (f~1(I,) N[z, +00))*" is a union of a perfect set and
the singleton {z} (which is isolated in (f~!(I,) N[z, +00))*") and then (f~(I,)N
[z,+00))**1 is a perfect set. So, in both cases, the required equality holds for
each z € R.

Obviously, the same reasoning gives (f~!(I,) N (—oo,z])**! = (f~1(I,) N
[z,+00))*"*2 for each z € R.

Let @ < w; be an ordinal number such that a, + 1 < «a for each natural
n. So we have (f~!(I,) N [z,+00))* = f~(I,) N [z,+00))**! and (f~!(I.) N
(—o00,z])* = (f~(Is) N (—o0,z])**! for each n € N and each z € R. Hence
Lot (f,z) = Lle+V¥(f,z) and L* (f,z) = LtV (f,z) for each z € R, which
completes the proof.
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THEOREM 2. For each bounded function f : R — R and for every a,
1 £ a < w, the set As?(f) is at most countable.

Proof. By virtue of Lemma 25.4 ([2], p. 59) the set As*(f) is a subset of a

set of the form
[o o}

U (S& AST) — der[4,]

n=1
for some sequence of sets {An}nen. Here (S) —der[A] = {z : {z} U A € §(z)}
for a local system S and A C R (see (2], p. 50) and (S;AS;) — der (4] =
((S1) — der [A]) A ((S2) — der [A]) for two local systems S;,S; and A C R (see [2],
p. 57). So it is sufficient to prove that for an arbitrary set A C R and for each «,
1 £ a < w; the set ((S*t) — der [A])A((S%") — der [A]) is at most countable. We
shall prove that E, = ((S%") — der[A]) — ((S%") — der [A4]) is at most countable.
(The proof for the second difference is similar.)

Observe first that z € (S%F) — der [A] (z € (S%) — der[A4]) if and only if
€ (AN[z,+00))* (z € (AN (—o0,z])*, respectively). Hence E, ={z €R:z €
(ANn[z,+00))* — (AN (—o00,z])*}. Suppose that E, is at most countable for all
7 < a. (This fact for 4 = 1 is well-known.) If & = 8+ 1 for some 3,1 £ 8 < wy,
then z € E, if and only if z € ((A N [z,+00))?)* — ((A N (—o0,z])?)!. Then for
z € E, there exists 6, > 0 such that (z — §,,z) N (A N (—o00,z])? = @ while for
every § >0 (z,z+6)N(AN[z,+00))? # 0. So {(z—6,,2) : z € E,} is a disjoint
family. Hence E, is at most countable. If a is a limit number, then it is nearly
obvious that Eq C U,<, E, so E, is also at most countable. This completes the
proof.

THEOREM 3. If £ € As*(f) and a is a limit ordinal, then there exists
Po < a such that f has a predecessor and z € Ng,<q<a AS7(f). If Bo > 1 and
Bo =6 + 1, then z & As®(f).

Proof. Suppose that L**(f,z) — L (f,z) # 0. (The proof in the remaining
case is similar.) Then there exists y € L*t(f,z) — L* (f,z). Hence for every
e>0z € (f(y—e,y+c¢€))N[z,+00))* and there exists g5 > 0 such that
& (f((y — €0,y + €0)) N (—00,z])®. Then, according to the definition of the
derivative of order a, there exists # < a such that z & (f~!((y — €0,y + €0)) N
(—o0,z])?. Hence, by virtue of property 1) of derivatives, z ¢ (f~*((y — €0,y +
€0)) N (—o0,z|)7 for every 74, 8 £ v £ a. Likewise (again according to the
definition of the derivative of order a) z € (f~!((y — €,y + €)) N [z, +00))" for
every € > 0 and for 8 £ v £ . Hence z € Ng<,<q AS™(f). Let Bo be the smallest
ordinal number for which the last relation holds. If 8, were a limit ordinal, the
reasoning can be repeated resulting in § < B, for which again the relation holds.
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So By has a predecessor. The rest follows immediately.

Now we shall show that the conditions described in Theorems 1, 2 and 3 give
the characterization of the family {As*(f)}1<a<w, for bounded functions. We
shall only slightly modify the formulation of the last condition.

THEOREM 4. If {E,}1<a<w, is a family of sets of real numbers satisfying
the following conditions:

1. there exists ap, 1 £ ay < wq such that E, = E,, for each a, ap £ a < wy;
2. for each a, 1 £ a < w; the set E, is at most countable;

3. if @ £ a9 is a limit ordinal and z € E,, then there exists 7, < a such that
z ¢ E,, (if v =0, put E; =0) and z € Nyo<y<a Eqs

then there exists a bounded function f : R — R such that E, = As*(f) for each
a,1< a<w;.

Proof. Before constructing the function f, we begin with some special
partitions of sets of ordinal numbers associated with points from U;<,<u, Ea-
Let z € Uicacw, La(= Uiga<ao Fa). Put H(z) = {a@ £ a0 : = € E,}. Let
G(z) = {a¢ € H(z) : a is a limit ordinal}. Both H(z) and G(z) are at most
countable. Let G(z) = {ey, az,...,ap,...}. By virture of condition 3 for each
n € N there exists va,, < a,,. We shall construct a sequence of left-open intervals
of ordinal numbers. Put Pi(z) = {7 : 72, <7 £ a1}. Obviously Pi(z) C H(z).
Suppose that we have already found disjoint intervals Pi(z), Py(z),..., Pa_1(Z).
If a, € U Pi(z), then we put P,(z) = @. If not, then let a;,,...,;, be all
ordinals among ay,...,a,—; which are smaller than e, (if there are some) and
put

Pn(z) = {'7 : ma.x('ya,n, Qs aaik) <~ é an}-

We have P,(z) C H(z) and P,(z) N P(z) = 0 for ¢ < n. By induction we
have defined a disjoint sequence {P,(z)}nen of left-open intervals included in
H(z). Consider the set H(z) — U, Pa(z). This set is also at most countable, say
H(z) — U, Pa(z) = {B1,B2,-- - +Pn,---}- To unify the rest of the construction we
shall artificially represent each singleton {8,} as a left-open interval. Observe
first that each B, has a predecessor, 8, = v, + 1. So Q.(z) = {Ba} = {7 :
Yn < ¥ £ PBn}. Finally let Rpn_1(z) = Pa(z),R2n(z) = Qn(z) for natural n.
(If the family of nonempty P,’s or @,’s is finite, we make the obvious change.)
With each z € Uj<a<q, Eo We have associated a disjoint sequence of left-open
nonempty intervals {R,(z)}nen such that H(z) = U, R,(z).

By virtue of condition 2 the set U;<,<,, Fo is at most countable. So the
set of all ordered pairs t = (z, R), where z € U;<,<q, Fa and R is the interval
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associated with z is at most countable. Let {t;,ts,...,¢,,...} be a sequence
consisting of all ordered pairs described above.
We shall need some lemmas:

LEMMA 1. Let z4 € R, let 8y, 1 be countable ordinals such that 0 £ §, <
$1 < w; and let X C R be an arbitrary countable set. There exists a countable
set F C R — X such that for h = xr (the characteristic function of F) we have
AsP(h) = {zo} for By < B £ B; and AsP(h) =@ for 1 £ B < fp and for B > f;.

Proof. First we construct a set F* C [zo,+00) fulfilling the following con-
ditions: F* is a closed countable set, o € F*, (F* — {zo}) N X = 0 and
AsP(xp+ = {z0} for 1 £ B £ By, AsP(xr+) = 0 for B; < B < w;. More precisely,
we shall have for 1 £ 8 <

(1) LP(xp+,2) = LP*(xp+,2) = LP~ (xp+,2) = {0} for z & F*,
(2) L7~ (xr+,70) = {0}, LP*(xp+,70) ={0,1},

(3) LP~(xr+,z) = LP*(xF+,z) = {0,1} for z € (F*)! — {zo},
(4) LP~(xF+,z) = LP*(xF+,z) = {0} for z isolated in F*,

and for § > fB; the only limit number (right-hand, left-hand limit number) of
order 3 will be zero. For 8; = 1 it suffices to take F* = {z¢, 2, 72, ...}, where
the sequence {z,}nen is strictly decreasing, convergent to z, and none of its
elements belong to X.

Suppose now that for every z € R and an arbitrary ordinal v, 1 £ v < 4,
we can build a set with all the required properties and sufficiently small, i.e.
included in a prescribed right-hand neighborhood of X. (This condition is not
difficult to obtain.)

If B; = v+ 1, then let {z,}.en be a decreasing sequence converging to z
and disjoint from X. Let F;} be a set constructed for z,, and ~ such that F} C
[Zn, Znt+€,), Where the sequence {€, }nen is sufficiently small, that is (z,—€p, Zn+
€n) N (Zn+1 — Ent1 Tnt1 + Ens1) = O for arbitrary n € N. Moreover, each Ff
should be disjoint from X and, additionally F;} N (2z, — X) = 0. (Here a — X
means the set {a — z : £ € X}.) Obviously for countable X the set a — X is also
countable.

Put F; = 2z, — F;}. We have F; N X = 0. Finally let F* = U,en(FF U
F;) U {zo}. It is not difficult to verify that F* fulfills all requirements.

If B, is a limit ordinal, then first we construct an increasing sequence {7, }nen
of ordinals converging to B1; then a decreasing sequence {z,}.eny converging to
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zo and disjoint from X and then for each n F,! is constructed for z,, and ~,. The
rest of the construction is without changes.

Now, if By = 0, we put K~ = @. If B, > 0, then similarly as before we
construct a set Kt for zo and B, included in [z, +00), disjoint from (2z, — X).
Finally we put F = Ft U (220 — Kt) — {z0}.

The above set F fulfills all the conditions.

LEMMA 2. Let z5 € R, and let 8, be a countable ordinal greater or equal
to 0 and let X C R be an arbitrary countable set. There exists a countable set
F C R — X such that for h = xr we have As?(h) = {zo} for By < f < w; and
AsP(h) =0 for 1 £ B £ Bo.

Proof. Put 8; = B+ 1. Let F, be a set constructed for zo, fo and §; (from
Lemma 1). Put F = Fy UG, where G C (R — X) N (zo,+00) is an arbitrary
countable set dense in (zo, +00). The set F fulfills all the requirements.

Now we proceed to the construction of f:

Consider the pair t; = (z,R). If ap € R (ao from condition 1), and R =
{7 : Bo <~ £ Bi1}, then, using Lemma 1, we construct the set F for z, 8o,
and X = Ui<ag<a, Lo and put fi = xr,. If o € R, then, using Lemma 2, we
construct the set Fy for z, fp and X = U,<,<q, Fo and again put f; = xp,.

Suppose that for ty,...,t,—; we have already found F,...,F,_; and hence
fi,..., fa-1. Consider t, = (z,R). T R = {y: 6 <~ £ b1} and B; < ay,
then we use Lemma 1 for z, 50,6 and X = UZ ' F; U Uigagao £a to find F,. If
$1 = ag, we use Lemma 2 for z, fp and X = U?;ll F; U Ui<aga, Ea to find F,.
Next we put f, = xr,.

So, by induction, we have defined a sequence of countable and disjoint sets
{Fa}nen and a segence of functions {fu}nen. Finally put f = X, 1f,. The
function f fulfills all the requirements.
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