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 CHARACTERISTIC FUNCTIONS AND
 PRODUCTS OF DERIVATIVES

 0. Introduction, The main result of this note is Theorem 18 that describes

 in simple terms the system of sets S C R - (-00,00) whose characteristic
 function X* can be expressed as the product of two (or more) derivatives. Suppose
 that S is such a set. Then x» is a function of Baire class 1 and, clearly, S =
 {x G R;x»{x) > 0} = {x £ R',Xi = !}• We see that S is at the same time an
 F„ -set and a Gf-set; such sets are called ambiguous. It has been proved in [l]
 that x» can be expressed as the product of two nonnegative derivatives if and
 only if S is ambiguous and each point of the set T = R ' S is a point of density
 of T. Theorem 18 shows that we obtain a larger system of sets S , if we drop the
 requirement of nonnegativity of the derivatives with product x»-

 1. Notation. The outer Lebesgue measure of a set A C R will be denoted
 by |A|. The word interval means a connected set A C R with |A| > 0.

 Let c G R and let Ji, J2, . . . be intervals. We say that the sequence (Jn) has
 property Pe if diam(Jn U {c}) - ► 0 and sup {diam(Jn U {c})/| Jn|; n = 1, 2, . . .} <
 00.

 Let T C R and c G R. We say that T is porous at c if there is a sequence
 ( Jn) with property Pc such that Jn fl T = 0 for each n. If such a sequence does
 not exist, we say that T is nonporous at c. A set T C R is called nonporous if it
 is nonporous at each of its points.

 The word function means a mapping to R. For each interval J let A (J) be
 the system of all functions (finitely) differentiate on J and let D (J) = {F''F G
 A (J)}. (At a boundary point of J belonging to J we mean the corresponding
 unilateral derivative of F.) We write V = D(R). If a, b G R and if F is a
 function defined at a and at 6, then [Fļjļ means, as usual, F(b) - F(a). If
 a, 6 G Ä, J = [a, 6] and if / G D(J ), then / or fj f means [F]ba, where
 F' = / on J; / = 0. A symbol like fA f sometimes means the corresponding
 Lebesgue integral. It is well-known that these two definitions of integral do not
 contradict each other.

 If F is a function on a set A C R, then ose {F, A) means sup{|F(y) -
 F(x)|; x,y G A}.
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 For each A C R let int A and ci A be the interior and the closure of A,
 respectively.

 In what follows S is a subset of R and T is its complement.

 2 ♦ Lemma. Let S be ambiguous and let A be a nonempty Gj-set in R. Then
 there is an open interval I such that I D A ý 0 an(ł that either I fl A C S or
 in act.

 Proof. Since {x G iž; Xsi^) > <*} an<ł {x £ -R; X»(x) < a} are i^-sets for
 each a G iE, x» is a function of Baire class 1. Thus there is a c G A and an open
 interval I such that c G I and that Xa is constant on I fl A. This completes the
 proof.

 3. Lemma. Let c,an,6„ G R, an < 6n (n = 1,2,...) and let the sequence
 ((a„, 6n)) have property Pc. Let F be a function difFerentiable at c. Then (F(bn) -
 FMW* - <"n) - F(c).

 Proof. If x,y £ R, x ^ c ^ y ý x ajid if F is defined at x and at y, then

 F(y) - F(x) = F(y) - F( c) + x-c ÍF(y)-F(c ) _ F(x) - F(c) 'j y x = y-c + y~x' y-c _ x-c J'
 This easily implies our assertion.

 4. Proposition. Let c G R. Let T be a Lebesgue measurable set that is
 porous at c whose right and left densities at c have common value 6. Then 6=0.

 Proof. Let F be an indefinite integral of x»* Then F'(c) = 1 - 6. Let (Jn)
 be a sequence with property Pe such that Jn C S for each n. Let {an, bn} be the
 boundary of Jn. Then (F(bn) - F(an))/(bn - an) = 1 for each n. By 3 we have
 1 = F'(c) = 1 - 6 whence <5 = 0.

 Remark. A nonporous ambiguous set can have density 0 at some of its
 points. Example: For n = ±1, ±2, ... let Jn be the open interval with boundary

 n + -^o = U Jn, T = {0} U To. It is easy to prove that T is a nonporous
 ambiguous set whose density at 0 is 0.

 5. Proposition. Let c G R and let T be porous at c. Let m be a natural
 number, fu . . . , fm e D and = II fj- Then c € S.

 Proof. Let L be an interval, L C S. Since sgn fj is constant on L for each
 j, we have by Holder's inequality 1 = ^ fL (FI ^ (II 1X1 /l Now it
 follows easily from 3 that 1 ^ 11 fj (c) • Hence c G S.

 246



 Remark. If '» can be expressed as the product of two (or more) derivatives,
 then (as stated in the introduction) S is ambiguous and, by 5, T is nonporous.
 Theorem 18 says that the converse of this assertion is also correct. To prove it
 we shall first establish some further properties of sets S fulfilling the mentioned
 conditions.

 6. Proposition. Let S be ambiguous and let T be nonporous. Let F be the
 boundary of S and let F0 be the set of all accumulation points of F . Then F
 and F0 are closed and F 'F0 C S .

 Proof. It is easy to see that F and Fo are closed. Now let c G F ' Fo. There
 are u, v G R such that u < c < v and that (u, v) fi F = {c}.

 Suppose that c G T. Since T is nonporous, we cannot have (u,c) C £;
 hence ( u,c ) C T. Similarly (c,v) C T so that (u,v) C T, (u,v) (1 F = 0 - a
 contradiction.

 7. Proposition. Let S and T be as in 6. Let L be an open interval such
 that Ln S ý 0 7^ LnT. Then there are the following two possibilities:

 (A) There is a c G L such that L fl S = L n [c, oo).

 (B) There are p,q € L such that p < q, p G S and (p, g) C T.

 Proof. Let F and F0 be as in 6. Clearly L fl F ± 0. We distinguish several
 cases.

 Case 1. L fl F is a singleton, say {c}. By 6 we have c € S so that either
 inS = id (- oo, c] or L fl S = {c} or L fl 5 = L fl [c, oo). Thus our assertion
 holds.

 Case 2. There are xi,x2,x3 G L such that x' < x2 < x3, (xi,x3) D F = {x2}
 and Xi G S or x3 G T. By 6 we have x2 G S. Let Xļ G S. If (xi, x2) C T, we choose
 p = Xi, g = x2. If (xi,x2) C 5, then (x2,x3) C T and we choose p = x2,ç = x3.
 Now let x3 G T. Since T is nonporous, we cannot have (x2,x3) C S. Thus we
 may choose p = x2,ç = x3 again.

 Case 3. There is an open interval I C L such that each point of I fl F is
 isolated and JflF has at least two points. Then there are xi, x2, x3 G I such that
 xi < x2 < x3, xi,x2 G F and (xi,x3) fl F = {x2}. By 6 we have xi G S and so
 Case 2.
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 Case 4. L D F0 ý 0 an(i each component of L ' F0 contains at most one
 point of F. According to 2 with A = L D F0 there is a c G F0 and an interval
 M - (u, v) C L such that c G M and that either M fi F0 C S or M fi F0 C T.

 a) Let MfiFo C 5. Let Ji be the system of all components J of M ' F0 for
 which u (£ et J. If there is a J G Jí with J fl F ^ 0, we have Case 2. Thus
 suppose that J D F = 0 for each J G Jļ. If J = (î/i, 2/2) £ Jí and J C T, we
 choose p = j/i, 9 = î/2- Now let J C 5 for each J G Ji. Then [r,v) C S for each
 r G MfiFo. In particular, [c, v) C S so that (c,«)nF = 0. If (u, c)n.Fo = 0, then,
 by assumption, (u, c) D F has at most one point so that c ^ Fo - a contradiction.
 Hence there is an r G (u, c) fi thus [r, v) C 5, c$lF - a contradiction again.

 b) Let M fi Fo C T. Let J2 be the system of all components J of M ' Fq
 for which v £ cl J . If there is a J G J2 with J fl F 0, we have Case 2. Thus
 suppose that J H F = 0 for each J G Since T is nonporous, we must have
 J C T for each J G Ji« Therefore (u, r] C T for each r G M fl Jo which leads to
 a contradiction as in a).

 Remark. Let S and T be as before and let 0 ^ S ^ R. Proposition 7 says,
 in particular, that, unless S = [c,oo) for some c G R, there are p,q G R such
 that p < q, p G S and (p, q) C T. Similarly, unless S = (- 00, c] for some c G R,
 there are p,q G R such that p <q, <7 G S and (p, 9) C T. This might lead to the
 conjecture that T always has an open component. This conjecture, however, is
 false, as the following example shows:

 Let G', Gļ, • • . be the components of [0, 1] ' C, where C is the Cantor set. Let
 pn be the midpoint of Gn and let 5 = {px,p2, . . .}. It is easy to see that S is
 ambiguous and that T is nonporous, but no component of T is open.

 8. Proposition. Let S and T be as in 6. Let J be an interval such that
 J fl T 0. Then J fl T contains an interval.

 Proof. Let I = int J. We may suppose that 7 fl S 0. If I fl T - 0, then
 we choose a c G ( J ' I) D T and we see that T is porous at c - a contradiction.
 Hence / H T ^ 0 and we apply 7.

 9. Lemma. Let a, b, a, ß, 7, 6,e,P,Q G R, a <b, aß = 76 = 0, e > 0. Then
 there are functions /, g piecewise linear on J = [a, 6] such that f(a) = a, g (a) =
 ß , f{b) = 1, g{b) = 6 , fg = 0 on J, fj f = P, j}g = Q, fj 'f' < |P| + e and
 fj I0I < |Q| + £•
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 Proof. Choose numbers xx, . . . ,x¡ such that a < xj < . . . < x$ < b, (|a| +
 |/?|)(x! - a) + (¡'y I + |6|)(6 - x5) < e and set

 Pi = (2P-a(xi-a) -7(6-x5))/(x3-ii),

 Qi = {2Q-ß{xx -a) - 6(b- x5))/(xs -x3).

 Define /(a) = a, /(xx) = 0, /(x2) = Pu f(x3) = /(x4) = /(x5) = 0, f(b) =
 7, y(a) = ß, y(xi) = g(x2) = g(x3) = 0, g(x4 ) = Qu </(x5) = 0, g(b) - 6
 and let / and g be linear on each of the intervals [x,-_x, x,] (j = 1, ... ,6), where
 x0 = a, x6 = b. It is easy to see that fg = 0 on J. We have fjf = |(o(^i - a) +
 Pi(x3 - xx) + 7(6 - x6)) = P, Jj l/l ^ |a|(xx - a) + |P| + |7|(6 - x5) < |P| + e.
 Similarly for g.

 10. Notation. In 11-17 S is a fixed subset of R. For each interval J let f(J)
 be the system of all pairs ( f,g ) such that f,g G V{J ), / = <7 = lonJfiS and
 fg = 0 on J n T. Let J be the system of all intervals J such that f( J) 7^ 0.

 11. Lemma. Let a,j,bj G R, ax < o2 < 6x < b2. Let ( fj,gj ) G f([<Zj, 6,-J) (j =
 1,2). Then there is a pair ( f,g ) G f ([ax» ^2]) such that f = fi, g = gi on [ax,a2]
 and / = /2, g = g2 on [6x,62].

 Proof. If there is a c G [0.2, òj] fi 5, we have /x(c) = • • • = 02(c) = 1. Then
 we set / = /x, g = gi on [ax,c] and / = f2, g = g2 on [c,b2]. Otherwise we have
 fidi = fi9i = 0 on [a2,6x]. Then we choose a number a G ( o2,òx ) and construct
 functions f,g such that / = fu g = gx on [ax,a2], /(a) = g(a) = 0 , f = f2, g =
 g2 on [6x^2] and that / and g are linear on the intervals [a2,a] and [ce, 6x] • It is
 easy to see that (f,g) G f([oi,62]).

 12. Lemma. Let L be an open interval. Suppose that for each iGl there
 is an open interval I such that x G I G J. Then L G J.

 Proof. Choose numbers x„ G L (n = 0, ±1, ±2, . . .) such that

 (1) xn_x < xn, inf{x„} = inf L, sup{xn} = supL.

 It follows easily from 11 that [x„_!, x„+i] G J for each n. Applying 11 once more
 we get L G J.

 13. Lemma. Let S and T be as in 6. Let L be an open interval. Let L G J
 and let w be a positive continuous function on L. Then there are F,G G A (L)
 such that (P', G') G f (L) and

 |F(x) - x| < w(x), |G(x) - x| < w(x) for each x G L.
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 Proof. Let F0,G0 be functions such that (F¿, G'0) G f (L). There are numbers
 xn G L (n = 0, ±1,±2, ...) fulfilling (1) such that, if we define Jn = [xn_!,xn],
 we have

 (2) 3| Jn| + 4 ose (F0, Jn) + 4 osc(G0, Jn) < min w(Jn) for each n.

 Choose an n. If Jn C S, set / = g = 1 on Jn. Otherwise, by 8, there are
 a, 6 G R such that xn_i < a < b < xn and that F¿G'0 - 0 on [a, 6]. Set
 p = W - [foŁ_, - |Ą].-, Q = W - [Go];.., - [Golf, £ = |J„|. According
 to 9 there are functions f,g such that / = F¿, g = G'0 on [xn-i,a] U [b,xn', f
 and g are continuous on fa, 61, fg = 0 on fa, 61, /, / = fT g = |Jn| and A? |/| <

 |P| + e, ¡I 'g' < 'Q' + e. Thus £ |/| < 2|Jn| + 2 osc(F0, J„). If x € Jn, then

 (3) I f /I ^ 2 osc(F0, Jn) + f 'f' < 4 osc(F0, Jn) + 2|J„|; Jxn-l Ja

 similarly for g. In this way we define functions / and g on L. It is easy to
 see that there are functions F and G such that F' = f, G' = g on L and that
 F(xn) = G(xn) = xn for each n. If x G Jn, then, by (2) and (3), |.F(x) -
 x| < |F(x) - F(x„_x)| + fxn_i - x| < 4 osc^o, Jn) + 3|Jn| < itf(z); similarly
 |G(x) - x| < tu(x). Clearly ( F',G ') G f (L).

 14. Notation. For each x G R let 2l(x) be the system of all intervals J
 such that x G J C S. If 2l(x) = 0, we set <p(x) = 0; otherwise we define
 <p(x) = sup{|J|; J G 2l(x)}.

 15. Lemma. Let c G T and let T be nonporous at c. Then <p'(c) = 0.

 Proof. Clearly ip(c) = 0. Suppose that our assertion fails. Then there is an
 e G (0, 1) and points cn ^ c such that cn - ► c and <p(cn ) > er|cn - c| (n = 1, 2, . . .).
 There are intervals Jn C S such that cn G J„ and | cn - c| ^ |Jn| > e|cn - cf.
 Then diam(Jn U {c}) < |c - c„| -f |Jn| ^ | J„ | ( 1 + e-1) so that (Jn) has property
 Pe. This is a contradiction.

 16. Lemma. Let S,T,L and w be as in 13. Then there are F,G G A (L)
 such that (F' G') G f (L) and that for each x G L there is a y G L with

 (4) ļy - x| < dist(x, R'L)

 and

 (5) max(|F(x)|, |G(x)|) < <p(y) + w(x).

 250



 Proof. Let F0,G0 be functions such that (F¿, G'0) G f (L). There are points
 xn G L (n = 0, ±1,±2, ...) fulfilling (l) such that, if we define Jn = [xn_i,x„]
 and = ! min w(Jn), we have

 (6) ose (F0,Jn) +OSC (G0,Jn) < en and |J„| < dtst(Jn)R'L)

 for each n. Set F(x o) = G(xo) = 0. Suppose that n is a natural number and
 that F(xn_i), G(xn-i) have been defined. If Jn C S, we set F(x) = F(xn- 1) +
 X - xn_i, G(x) = G(xn_x) + X - xn-i for each x G Jn. Otherwise there are, by 8,
 numbers a,b such that xn_x < a < b < xn and that F¿G'Q = 0 on [a, 6]. Set

 P„ = -*•(*„-,) - - 'F„)f, <?„ = -G(i„_,) - [Goli... - [«olí" •
 By 9 there are functions f,g on J„ such that / = F¿, g = G'0 on [xn_i,a] U
 [6,xn], / and g are continuous on [a, 6], J0ł / = P„, /a6 g = Q„, /0Ł |/| < |Pn| +
 en, fa I0I < |Qn| + and fg = 0 on [a, 6]. For each x G Jn set F(x) =
 - f, G(x) = - f*n g. Thus we have defined functions F and G on [x0, sup L).
 It is easy to see that F(x„) > 0 for each n ^ 0; we have F(xn) > 0 if and only if
 Jn C S. Similarly for G.

 Let x G Jn, n > 0. If F(xn) > 0, we find an integer m < n such that
 F{xm) = 0 and that F(xt ) > 0 for k = m+ 1 Then [xm,xn] C S and
 F(t) = G(t) = t - xm for t G [xm,xn]. In particular, 0 < F(x) = G(x) = x - xm ^
 xn - xm Ú <p{xn). Thus the relation (5) is fulfilled with y = xn. If -F(xn) = 0,
 then |F(x)| < 2 osc(F0, Jn) + |P«| + en ^ F(xn- 1) + 4 osc(F0, •/«) + By the
 preceding argument we have F(x„_i) ^ <p(xn-i) so that, by the first inequality
 in (6), |F(x)| < <p(xn- 1) + u;(x); similarly for G. Hence (5) holds with y = xn_ļ.
 The relation (4) follows from the second inequality in (6). On (inf L, x0) we
 define F and G analogously. It is obvious that ( F',G ') G f(L).

 17. Proposition, Let S be ambiguous and T nonporous. Then R G J.

 Proof. Let B = {x G R' there is an open interval J G J such that x G J}
 and let A = R ' B. Then A is closed. Suppose that A ^ 0. Let tv be a function
 continuous on R such that w = w' = 0 on A and w > 0 on B. By 2 there is an
 open interval I such that I D A ^ 0 and either IHAgSotIdAcT. It follows
 from 12 that each component of I D B belongs to J.

 (a) In A C S. On each component L of In B we construct functions F and G
 according to 13. This defines functions F and G on / fl B. Set .F(x) = G(x) = x
 for each x G I fl A. Then |.F(x) - x| ^ w(x), |G(x) - x| ^ w{x) for each x G I.

 (b) I n A C T. On each component of I n B we construct functions F and
 G according to 16. This defines functions F and G on I fl B. Set F = G = 0 on

 251



 I fi A. Let a E Ani, X E I, i/a. According to the construction of F there is
 a y G J such that 'y - x' <'x - a| and that |.F(z)| ^ w(x) + <p{y). (If x G A, we
 may choose y = x.) Obviously |y - a| < 2'x - a| so that

 Fix) < = w(g) +2 <p(y)
 x - a = x - a y - a

 By 15 we have <p'{a) = 0. Hence F'(a) = 0. Similarly G'(a) = 0.
 Now it is easy to see that in either case ( F',G ') G f(/). It follows that I C B

 which is a contradiction. Hence A = 0. By 12 we have R = B G J.

 18. Theorem. Let S C R, T = R ' 5. Then the following three conditions
 are equivalent:

 1) There is a natural number m and functions /i,...,/m G D such that
 fl ' ' ' fm = X*-

 2) 5 is ambiguous and T is nonporous.

 3) There are f,g G V such that / = g = 1 on S and fg = 0onT.

 Proof. Let 1) hold. Since is of Baire class 1, S is ambiguous and, by 5, T
 is nonporous. The implication 2) =>• 3) has been proved in 17 and the implication
 3) =>■ 1) is obvious.

 Remark. Suppose that x> can be expressed as the product of two derivatives.
 It is natural to ask whether we can require something more of one or both of
 these factors. For example, by 18, we may require both to be identically 1 on 5;
 in particular, we may require both to be continuous on int S. It is not difficult
 to prove that we may also require both to be continuous on int T. On the other
 hand it is clear that at each boundary point of S at least one of the factors must
 be discontinuous. This, however, does not yet exclude the possibility that one of
 the factors could be continuous everywhere; but, according to 21, in nontrivial
 cases this is actually impossible.

 We may ask similar questions replacing continuity by, e.g., local summability
 or boundedness (above and/or below) or nonnegativity of one or both factors.
 It seems that it is not easy to answer some of these questions. For example,
 I do not know whether the following assertion is true: Let S be ambiguous, T
 nonporous. Then there are f,g G V such that f 'L 0 and fg = x«-

 What follows are some partial results that may serve as illustrations to the
 mentioned problems.
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 19. Proposition. Let S be ambiguous, T nonporous. Let c G (ci S) O (ci T).
 Let f,g G V, fg = x» and f(c) ý 0- Then / is discontinuous at c.

 Proof. Suppose that / is continuous at c. There is an open interval L such
 that c € L and that / ^ 0 on L. By 7 there are p,q G L such that p <
 9, {p,q} HS / 0 and (p, q) C T. Then g = 0 on (p, q) so that g = 0 on
 {PiQ}> {PiQ} C T which is a contradiction.

 Remark. If c G S D ci T, then both / and g are discontinuous at c. If,
 however, c G T fi ci 5, then / may be continuous at c, as the following example
 shows.

 20. Example. For n = 1,2,... let zn = 2~n, xn = zn - zn+i/n 2, yn =
 (xn+zn)/ 2. It is easy to see that xn > 2n+1. Let /„, <7„ be nonnegative derivatives
 such that fn = </n = 0 on R ' (xn,zn), fn V ^ 2 on R, fn(Vn ) = 9n(Vn )
 1, /n<7n = 0 on Ä ' {yn}. Set / = E /n/n, 9 = E Let zn+1 < X <zn. Then
 Jo fif ^ Sr=n fc/5 ^ £?=n - Xk) = Er=n 2fc2fc+1/A2 £ ¿ E£n ft =
 2zn/n < 4 x/n. This easily implies that g £ V. It is clear that / G P and that /
 is continuous at 0. We have fg = Xs, where S = {î/1,3/2, • • •} so that 0 G T(~'ci S.

 21. Proposition. Let 0 ^ S ^ R, f,g G V and let fg = x»- Then / is not
 continuous.

 Proof. Let B be the boundary of 5. Suppose first that B D S = 0. Then 5
 is open. Let (a, 6) be a component of S and let, e.g., a G R. Then T is porous
 at a which contradicts 5. Thus let c G B D S. Then f(c) 7^ 0 and, by 19, / is
 discontinuous at c.

 22. Proposition. Let f,g G D, 0 ý S Ý R> Í9 = Xa- Let Q G R and let
 l/l V 'g' < Q. Then Q> 2.

 Proof. According to 7 there are p,q G iř such that p < q, (p, q) C T and
 {p>?} n S 0. Let, e.g., p G <S. Then f(p)g(p) = 1. We may suppose that
 /(p) > 0. Clearly |/| + |ff| ^ Q on ( p,q ). Hence for each x G (p, 9) we have
 /p (/ + g) ^ Q(x - p) so that /(p) + </(p) ^ Q. Since ť + t'1 ^ 2 for each
 t G (0, 00), we have Q ^ 2.

 23. Proposition. Let f,g E D, fg = c E T. Let / ł 0 on 5 and let /
 and <7 be bounded below. Then the lower density of T at c is positive.
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 Proof. Let M G R and let / A g ^ - M. Let x G (c, oo), Sx = S n (c, x), Tx =
 T n (c,x). We have |S,|» = (/s- ^fīļf </„,/• /Si g = (/,* / - JTm /) • (// 9 -
 Îtz ff) = (L' f + Af|r,|) • (f* g + M'TX'). Let 6 be the right lower density of T
 at c. Choose xi,x2,.. . G (c, oo) such that xn -> c and 'TXn'/(x„ - c) -> 6. Then
 (1 - S )2 ^ (/(c) + M6)(g(c) + M 6) and f(c)g(c) = 0 so that 6 > 0. It can be
 proved similarly that the left lower density of T at c is positive.

 Remark 1. It follows from 23 and from the example in 4 that the following
 two assertions (where S is ambiguous and T nonporous) are false:

 Al. There are f,g G V such that / > 0, inf g > - oo and fg = x»-

 A2. There are f,g G V such that / A g > - 1 and fg = x»-

 Remark 2. Theorem 18 was stated without proof in [2].
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