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 Separation of points by families of intervals

 Let X be a separable metric space. It has been shown (see [1] or [3]) that the Borei

 structure on X has a minimal generator, i.e. there is a family 3e of subsets of X such

 that the a- field <r( 3e) generated by 3e equals the Borei a- field ^(X), and such that

 <t(< %)t3(X) for any proper sub- collection <5$ Ç <5? Such minimal generators are

 necessarily countable, as follows from the well- known and easily proved

 Lemma 1: Let (X, 3) be a measurable space with 3 countably generated. If

 & Ç 3 is such that o{3f) = 3, then there is some countable <5$ Ç 3e such that

 <t{Ą) = 3.

 In particular, the real line IR has a minimal Borei generator. In [1; p. 19], an argument

 was made attempting to show that no minimal generator for IR could be constructed using

 solely intervals. The underlying premise was that a family of intervals is a generator if and

 only if the set of corresponding interval end- points were dense in IR. As pointed out by M.

 Filipczak [2], this premise is incorrect. Moreover, as we demonstrate, there is indeed a

 minimal generator for IR comprising only intervals.

 Let 3? be a family of subsets of a set X. Points x, y e X are separated by 3e if

 there is some F e 3f such that either

 x 6 F and y i F or y 6 F and x i F.

 Say that 3e is a minimal separator if 3f separates each pair of distinct points from X,

 but no proper sub- family «5$ Ç 3e does.
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 The well- known 'Blackwell property' of IR (see [1, p. 21]) can be stated as

 Lemma 2: Let be a countable sub- family of J? (IR). If 3e separates all pairs of

 points in IR, then &(<!?) = ^(IR ).

 Note: Lemma 2 answers Filipczak's question 2 [2, p. 202] in the negative. The

 same result holds for any complete separable metric space.

 In Lemma 2, the countability of 3e is essential, because an uncountable sub-family

 of <i?(IR) which separates all pairs of points in IR need not be a generator of ^(IR).

 However, if 3e is an uncountable family of open intervals separating all pairs of points,

 Filipczak in [2] has shown that a{ 3r) = i?(IR ). As a consequence of our Theorem 1,

 Filipczak's result follows easily. Theorem 1 itself has a simple proof. Our Theorem 4 gives

 a result for closed non- degenerate intervals analogous to that of Theorem 1, which in turn

 gives Filipczak's result for closed intervals. Our example 1 shows that the analogous result

 for other types of intervals is not true. Let us raise the question of what can be said for

 families of open intervals which do not separate every pair of points: is there always a

 countable sub- family separating the same pairs? The answer is positive and requires an

 easy preliminary:

 Lemma 3: Let & be a family of intervals. There is a countable sub- family

 3^ Ç 3r such that fl <5$ = D 3e.

 Theorem 1: Let 3e be a family of open intervals. Then there is a countable

 sub- family <5$ ç 3e separating the same pairs of points in 3e.

 Proof: For each pair of rational numbers r < s, let <5£s be a countable sub- family

 of 3* such that

 1) r, s e I for each I e 3ÇS ;
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 2) n #s = n {I e sr-. r, s e i}.

 Lemma 3 implies that such a sub- family exists. Let <5% be the union of the collections

 % as r and s range over pairs of rationals r < s.

 We shall show that if x < y are separated by 3e, they are also separated by <%.

 Case 1: There is some J 6 3e such that x € J and y i J. Choose rational

 numbers r and s in J such that r < x < s. Then

 n {I e 3f' r, s e 1} ç J,

 so that H <5*rs Ç J- Since xen^nd y £ fi <5fs, it follows that x and y are separated

 by one of the intervals <5£s-

 Case 2: There is some J 6 & such that x ¿ J and y € J. The proof runs parallel

 to case 1, with x < r < y < s. Again, 3ÇS separates x and y.

 Q.E.D.

 Without substantial change, the proof of Theorem 1 can be used to establish the

 following somewhat more general result:

 Theorem 2: Let «^be a family of subsets of a set X. Suppose that

 i) for each ^0Ç ^ there is a countable <3oo £ * such that n = n

 ii) there is a countable family ý of subsets of X such that whenever x e F for

 F e <5$ there is some G e p with x e G Ç F.

 Then there is a countable sub- family of 3e separating the same pairs of points as

 9.
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 Corollary: Let 3e be a collection of subsets of IRn of the form Ii x ... x In , where

 each 1^ is an open interval. Then there is a countable sub- family of 3e separating the

 same points as 3e.

 Proof: Apply Theorem 2, taking ý as the collection of sets of the form

 Ji x ... x Jn, with each a closed interval with rational end- points.

 Q.E.D.

 Taking complements in Theorem 2 yields a dual result.

 Theorem 3: Let <?" be a family of subsets of a set X. Suppose that

 i) for each <5$ Ç 3^ there is some countable <5$o Ç •% such that U 3^o = U <5$;

 ii) there is a countable family p of subsets of X such that whenever y g F for

 F e 3^ there is some G e ý with y e G and F fi G = (j).

 Then there is a countable sub- family of 3e separating the same points as 3f.

 Theorem 3 may be applied to families of closed intervals.

 Lemma 4: Let 3f be a family of non- degenerate intervals (of any type). There is

 a countable sub- family «5$ Ç & such that U 3*¡¡ = U 3Í

 Indication: For x, y 6 U 3e, write x ~ y, if there are Ii I2 ... Ik in 3f with x e Ii,

 y 6 Ik, and Ij n IJ +i $ (p for 1 < j < k - 1. The equivalence classes of ~ are intervals,
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 each is a countable union of intervals from 31 and there are at most countably many such

 classes. The conclusion follows.

 Theorem 4: Let Sf be a family of non-degenerate closed intervals. Then there is a

 countable family «5$ Ç & separating the same pairs of points as J.

 Note: The condition of non- degeneracy cannot be eliminated, as the family

 & - {{x }: X e IR} illustrates.

 Indication: This follows from Theorem 3 and Lemma 4.

 However, in contrast to the corollary to Theorem 2, we offer the following example.

 Note that property i) fails for closed boxes in Rn.

 Example 1: Let & be the collection of all subsets of R2 of the form

 [x , y] * [-x , z], with x < y and - x < z. Then 3e separates points on the anti- diagonal

 Y = -X, but the same cannot be said for any countable <5$ ç

 Also, the same type of result does not obtain for half-open intervals, as we show.

 Example 2: Consider the family 3e = {(- x, x] : x € R} of half-open intervals.

 Then 3e separates any pair of points in R, but for each x ^ 0, the interval (- x,x] is the

 only member of the family 9e separating x and - x. Thus & is a minimal separator

 and contains no countable <5% separating the same pairs of points.

 It is interesting to observe that 3e cannot be a generator for the Borei a- field on

 R. In fact <j{ &) comprises all sets B a C, where B is a symmetric Borei set (i.e.

 B = - B), and C is countable. ļgļ



 As a consequence of Theorems 1 and 4, we have the following remarkable result.

 Theorem 5: If 3f is any family of either open or closed, non- degenerate intervals,

 then there is a countable sub- family <5% C & such that a( ČĶ) = a( 3e). In particular,

 a{ 3e) is countably generated.

 Proof: Using Theorems 1 and 2, obtain a countable <5$ Ç 3e such that <5$ and 3e

 separate the same pairs of points. This implies that any I e 3e is a union of atoms of

 0(3^). By the Blackwell property for a(3k) (see [1]), l€a(<5%).

 Q.E.D.

 We now establish the existence of a minimal generator for IR comprising only

 intervals.

 Theorem 6: There is a minimal generator 3e whose elements are half open intervals.

 Proof: The members of 3e will be the intervals

 I(m,n) = (m2~n, m2~n + 2~n~1],

 where m and n are integers.

 Claim 1: Of the intervals in 3e, I(m,n) and only I(m,n) separates the pair of points

 (2m + 1)2- n- 1 and (2m + 2)2-n_1.

 Proof of claim: Suppose that I(M,N) separates these points. Then either

 (2m + 1)2~ n- 1 < M2~N < (2m + 2)2~n_1 < M2~N + 2-N_1
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 or

 M2"N < (2m + 1)2- n- 1 < M2"N + 2~N_1 < (2m + 2)2~n_1.

 We show that the first case cannot happen. For, if n < N, then

 2M < (2m + 2)2N- n < 2M + 1,

 where the middle term is an even integer, a contradiction. On the other hand, if n > N,

 then

 2m + 1 < M2n+1_N < 2m + 2,

 where once again the middle term is an even integer, a contradiction.

 We thus suppose that the second case happens. Now, if n < N, then

 2M < (2m + 1)2N- n < 2M + 1,

 where the middle term is an even integer, a contradiction. But if n > N, then

 2m + 1 < M2n+1_N + 2n- N < 2m + 2,

 where the middle term is an even integer, a contradiction. Hence, n = N, and we have

 2M < 2m + 1 < 2M + 1 < 2m + 2,

 so that m = M.

 Claim 2: Let x and y be distinct real numbers. Then x and y are separated by the
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 family of all intervals I(m,n).

 Proof of claim: We may assume y < x. Let N be the smallest integer such that
 - N- 1

 2 < x - y , and let M be the largest integer such that M 2 < y. Then
 y y

 _N+i
 y < (M + 1)2 . There are four cases to consider for y.

 J

 Case 1: y e I(2M ,N) = (2M 2~N, 2M 2~N + 2~N_1] =
 y y y

 (M 2~N+1, M 2~N+1 + 2-N-1]. Then I(2M ,N) separates y and x.
 y y y

 Case 2: y € (M 2~ + 2~~ ' M 2~ + 2- ^]. Then x lies to the right of this
 J J

 interval, so that y e I(M ,N - 1) and x ¿ I(M ,N - 1).
 y y

 Case 3: y e I(2M + 1, N). Then this interval separates y and z.
 J

 Case 4: y e (2M + 1)2~N + 2~N_1,(M + 1)2~N+1], Since 2~N-1 < x - y < 2~N, we
 J J

 have x e I(M + 1, N - 1) so that I(M + 1, N - 1) separates x and y.
 J J

 Thus 5e is a minimal separator and hence (lemma 2) a minimal generator for

 3{ÏÏ).

 Q.E.D.

 Note: The referee of this paper intercepted critical errors in an earlier version of Theorem

 6, and the proof given above makes use of his suggestions. Also, S. Solecki of Wrocław has
 k k

 informed the authors that the system { (n2 , (n+1) 2 ): n, k c U } is a minimal separator

 for c2((R) comprising only open intervals.

 Filipczak [2] states a number of results for spaces other than IR, some for general
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 Hausdorff spaces. Indeed, it is natural to ask whether Theorems 1 and 2 hold for open,

 convex subsets of Rn. The answer is no:

 o

 Example 3: Let C be a circle in the plane R . Let be the collection of all

 open half- planes whose boundary is tangent to C and which contain the interior C. Let

 5 Ç be the collection of all open, convex sets interior to C. Then <5r= <5*1 U «5Ç separates
 o

 points of R , but for each countable «5$ Ç 3' there are points x,y on the circumference of

 C not separated by «5$.

 The example answers Filipczak's Question 1 in [2; p. 202], with reference to her

 Theorem 3. As for the same question with reference to her Theorems 4 and 5, we offer the

 following

 Example 4: Consider (0,1) with the discrete topology and let X = (0,1) U {œ} be

 its one- point compactification. For each rational r e (0,1) define Hf = (0,r) U {od}. The

 family &= {Hf : r rational} is a countable family of compact subsets of X separating all

 pairs of points in X. But <#(X). Thus, condition (**) cannot replace (***) in

 Theorem 4 of [2]. Taking complements of sets in & shows that (**) cannot replace (***)

 in Theorem 5 of [2].
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