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Separation of points by families of intervals

Let X be a separable metric space. It has been shown (see [1] or [3]) that the Borel
structure on X has a minimal generator, i.e. there is a family & of subsets of X such
that the o—field o( F) generated by F equals the Borel o—field Z(X), and such that
o(% ) # B(X) for any proper sub—collection &% C & Such minimal generators are

necessarily countable, as follows from the well-known and easily proved

Lemma 1: Let (X, 2) be a measurable space with @ countably generated. If
F C @ issuch that o( F) = 2B, then there is some countable &% C F such that
o( %) = 3.

In particular, the real line R has a minimal Borel generator. In [1; p. 19], an argument
was made attempting to show that no minimal generator for R could be constructed using
solely intervals. The underlying premise was that a family of intervals is a generator if and
only if the set of corresponding interval end—points were dense in R. As pointed out by M.
Filipczak [2], this premise is incorrect. Moreover, as we demonstrate, there is indeed a
minimal generator for R comprising only intervals.

Let & be a family of subsets of a set X. Points x,y € X are separated by F if
there is some F € F such that either

x€e€F and y¢F or yeF and x¢F.

Say that & is a minimal separator if F separates each pair of distinct points from X,
but no proper sub—family % C F does.

177



The well-known ‘Blackwell property‘ of R (see [1, p. 21]) can be stated as

Lemma 2: Let & be a countable sub—family of 2Z(R). If F separates all pairs of
points in R, then o F) = B(R).

Note: Lemma 2 answers Filipczak’s question 2 [2, p. 202] in the negative. The
same result holds for any complete separable metric space.

In Lemma 2, the countability of & is essential, because an uncountable sub—family
of Z(R) which separates all pairs of points in R need not be a generator of 2(R).
However, if & is an uncountable family of open intervals separating all pairs of points,
Filipczak in [2] has shown that o(F) = B(R). As a consequence of our Theorem 1,
Filipczak’s result follows easily. Theorem 1 itself has a simple proof. Our Theorem 4 gives
a result for closed non—degenerate intervals analogous to that of Theorem 1, which in turn
gives Filipczak’s result for closed intervals. Our example 1 shows that the analogous result
for other types of intervals is not true. Let us raise the question of what can be said for
families of open intervals which do not separate every pair of points: is there always a
countable sub—family separating the same pairs? The answer is positive and requires an
easy preliminary:

Lemma 3: Let & be a family of intervals. There is a countable sub—family

HC Fsuchthat NFK=nNF

Theorem 1: Let ¥ be a family of open intervals. Then there is a countable

sub—family % C  separating the same pairs of points in &

Proof: For each pair of rational numbers r < s, let Fs be a countable sub—family

of & such that

1) r,sel foreach 1€ &s;
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2) NFs=n{le F:r,5€l}.
Lemma 3 implies that such a sub—family exists. Let & be the union of the collections
Fs as r and s range over pairs of rationals r < s.

We shall show that if x <y are separated by ¥, they are also separated by .

Case 1: There is some J € F such that x€J and y ¢ J. Choose rational
numbers r and s in J suchthat r < x <s. Then

N{le F:r,sel}C,
sothat N K5 CJ. Since xeN Hsnd y ¢ N K, it follows that x and y are separated

by one of the intervals Xs.

Case 2: Thereis some J € & suchthat x¢J and y € J. The proof runs parallel

to case 1, with x < r < y < 's. Again, &5 separates x and y.

Q.E.D.
Without substantial change, the proof of Theorem 1 can be used to establish the

following somewhat more general result:
Theorem 2: Let Fbe a family of subsets of a set X. Suppose that
i) for each & C & thereis a countable %, C & such that n &, =n F;
ii) thereis a countable family ¥ of subsets of X such that whenever x € F for

Fe & thereissome G € ¥ with xe GCF.

Then there is a countable sub—family of F separating the same pairs of points as
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Corollary: Let F be a collection of subsets of Rn of the form I;x...xI,, where
each I, is an open interval. Then there is a countable sub—family of & separating the
same points as &

Proof: Apply Theorem 2, taking ¥ as the collection of sets of the form
Jix..x Jn, with each Jk a closed interval with rational end—points.

Q.E.D.

Taking complements in Theorem 2 yields a dual result.

Theorem 3: Let F be a family of subsets of a set X. Suppose that

i) for each &% C & there is some countable Fy C F% such that U FHy = U K;

ii) there is a countable family ¥ of subsets of X such that whenever y ¢ F for

Fe J thereissome Ge ¢ with ye G and FnG = ¢.

Then there is a countable sub—family of & separating the same points as &

Theorem 3 may be applied to families of closed intervals.

Lemma 4: Let & be a family of non—degenerate intervals (of any type). There is

a countable sub—family % C & such that U S =UZF

Indication: For x,y €U & write xw~y,if thereare I;I,...Ixin & with x €I,

y€lx, and IjnIj,# ¢ for 1< j<k—1. Theequivalence classes of ~ are intervals,
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each is a countable union of intervals from & and there are at most countably many such

classes. The conclusion follows.

Theorem 4: Let F be a family of non—degenerate closed intervals. Then there is a

countable family & C F separating the same pairs of points as &

Note: The condition of non—degeneracy cannot be eliminated, as the family

F = {{x }: x € R} illustrates.

Indication: This follows from Theorem 3 and Lemma 4.

However, in contrast to the corollary to Theorem 2, we offer the following example.

Note that property i) fails for closed boxes in R™.

Example 1: Let & be the collection of all subsets of R2 of the form
[x,y] x[—x,z],with x <y and —x < z. Then & separates points on the anti—diagonal

Y = —X, but the same cannot be said for any countable % C &

Also, the same type of result does not obtain for half—open intervals, as we show.

Example 2: Consider the family F= {(—x, x] : x € R} of half—open intervals.
Then & separates any pair of points in R, but for each x # 0, the interval (—x,x] is the
only member of the family F separating x and —x. Thus ¥ is a minimal separator
and contains no countable % separating the same pairs of points.

It is interesting to observe that & cannot be a generator for the Borel o—field on
R. In fact o F) comprises all sets B o C, where B is a symmetric Borel set (i.e.

= —B), and C is countable. 181



As a consequence of Theorems 1 and 4, we have the following remarkable result.

Theorem 5: If & is any family of either open or closed, non—degenerate intervals,
then there is a countable sub—family % C & such that o %) = o( &). In particular,

o( &) is countably generated.

Proof: Using Theorems 1 and 2, obtain a countable % C & such that &% and &
separate the same pairs of points. This implies that any I € & is a union of atoms of
o( %). By the Blackwell property for o( %) (see [1]), I€ o( ).
Q.E.D.

We now establish the existence of a minimal generator for R comprising only

intervals.
Theorem 6: There is a minimal generator F whose elements are half open intervals.
Proof: The members of F will be the intervals

-n _,-n, ,—n-1
I(m,n) = (m2™", m2™" + 2777,

where m and n are integers.

Claim 1: Of the intervalsin & I(m,n) and only I(m,n) separates the pair of points

(2m + 1)27% ! and (2m + 2)27 7L

Proof of claim: Suppose that I(M,N) separates these points. Then either

@em+ 127 L eMe™N < @m + 222 LMY
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or

N

M2 N < 2m+ 1)2 ™ Teme N 427N

+27 N1 ¢ (om + 2)27 L.

We show that the first case cannot happen. For, if n < N, then
9M < (2m + 2)2N D¢ 2M + 1,
where the middle term is an even integer, a contradiction. On the other hand, if n > N,
theh
om + 1< M2" N com 4 2
where once again the middle term is an even integer, a contradiction.
We thus suppose that the second case happens. Now, if n < N, then
9M < (2m + 12N D ¢ M + 1,
where the middle term is an even integer, a contradiction. But if n > N, then

-N

n+1-N + o

2m + 1 < M2 <2m+2,

where the middle term is an even integer, a contradiction. Hence, n = N, and we have

2M<2m+1<2M + 1< 2m + 2,
so that m = M.

Claim 2: Let x and y be distinct real numbers. Then x and y are separated by the
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family of all intervals I(m,n).

o

roof of claim: We may assume y < x. Let N be the smallest integer such that
—N—-1 -N+1

[ %)

<x-—y, and let My be the largest integer such that My2

y < (M + 1)2~N+1

<y. Then

. There are four cases to consider for y.

N 2My2_N 42N

Case 1: y € I(2M_,N) = (2M2

(My2_N+1, My2"'N+1 + 2_N_1]. Then I(2My,N) separates y and x.

—N+1 —N-1 —N+1

+ 2 , M_2 + 2_N]. Then x lies to the right of this

y
interval, so that y € I(My,N —1)and x ¢ I(My,N -1).

ase2: y € (My2

Case3: y€ I(2My + 1, N). Then this interval separates y and z.

Case 4: y € (2M, + 12N + 2‘N‘1,(My + 1278 Since e N T cx—y<2 N we
have x € I(My +1,N—1) so that I(My + 1, N —1) separates x and y.

Thus & is a minimal separator and hence (lemma 2) a minimal generator for
2 (R).
Q.E.D.

Note: The referee of this paper intercepted critical errors in an earlier version of Theorem
6, and the proof given above makes use of his suggestions. Also, S. Solecki of Wroclaw has
informed the authors that the system { (n2k, (n+1) 2k): n,k e } is a minimal separator
for 4AR) comprising only open intervals.

Filipczak [2] states a number of results for spaces other than R, some for general
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Hausdorff spaces. Indeed, it is natural to ask whether Theorems 1 and 2 hold for open,

convex subsets of RY. The answer is no:

Example 3: Let C be a circle in the plane IR2. Let & be the collection of all
open half—planes whose boundary is tangent to C and which contain the interior C. Let
% be the collection of all open, convex sets interior to C. Then F= F U &K separates
points of IR2, but for each countable % C F there are points x,y on the circumference of
C not separated by %.

The example answers Filipczak’s Question 1 in [2; p. 202], with reference to her
Theorem 3. As for the same question with reference to her Theorems 4 and 5, we offer the

following

Example 4: Consider (0,1) with the discrete topology and let X = (0,1) U {w} be
its one—point compactification. For each rational 1€ (0,1) define H_= (0,r) U {a}. The
family = {Hr : r rational} is a countable family of compact subsets of X separating all
pairs of points in X. But o &) # Z(X). Thus, condition (**) cannot replace (***) in
Theorem 4 of [2]. Taking complements of sets in & shows that (**) cannot replace (***)

in Theorem 5 of [2].
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