Real Analysis Exchange Vol 16 (1990-91)

Ewa Strońska, Instytut Matematyki, Wyższa Szkoła Pedagogiczna, 85-064 Bydgoszcz, ul. Chodkiewicza 30, POLAND

ALGEBRAIC STRUCTURES GENERATED BY \mathcal{T}_{d} -QUASI CONTINUOUS AND ALMOST CONTINUOUS FUNCTIONS ON \mathbb{R}^{m} .

I.PRELIMINAIRIES. Let (X, \mathcal{T}) be any topological space and \mathcal{R} denotes the real line. A function $f: X \rightarrow \mathcal{R}$ is called \mathcal{T} -quasi continuous (\mathcal{T} -cliquish) at a point $\mathcal{X} \in X$ iff for every $\mathcal{X} > O$ and for every neighbourhood $U \in \mathcal{T}$ of the point x there exists a \mathcal{T} -open set V such that $\mathcal{D} \neq V \subset U$ and $| f(u) - f(x) | < \mathcal{X}$ for every $u \in V$ ($oscf < \mathcal{X}$). A function f is \mathcal{T} -quasi continuous (\mathcal{T} -cliquish) on X iff f is \mathcal{T} -quasi continuous (\mathcal{T} -cliquish) at every point of X ([1]).

Let $X=R^m$. We shall use the following differentiation basis ([8]). For every k=1,2,... let \mathcal{P}_k be the family of all m-dimensional intervals of the form

$$\left[\begin{array}{c}\frac{\mathbf{i}-\mathbf{1}}{\mathbf{2}^{k}}, \frac{\mathbf{i}}{\mathbf{2}^{k}}\right] \times \left[\begin{array}{c}\frac{\mathbf{i}-\mathbf{1}}{\mathbf{2}^{k}}, \frac{\mathbf{i}}{\mathbf{2}^{k}}\right] \times \ldots \times \left[\begin{array}{c}\frac{\mathbf{i}-\mathbf{1}}{\mathbf{2}^{k}}, \frac{\mathbf{i}}{\mathbf{2}^{k}}\right], \\ \frac{\mathbf{i}-\mathbf{1}}{\mathbf{2}^{k}}, \frac{\mathbf{i}}{\mathbf{2}^{k}}\right]$$

where i_1, i_2, \ldots, i_m are integers. Let $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$. Let $A \subset R^m$ be a measurable (L) (i.m. measurable in the sense of Lebesgue) set. For $x \in R^m$ we can define the upper density of A at a point by

$$\overline{d} (A, x) = \overline{\lim_{P \to x}} \frac{|A \cap P|}{|P|}$$

$$P \in \mathcal{P}$$

where |A| denotes m-dimensional measure (L) of A and the symbol $P \rightarrow x$ denotes that $x \in P$ and the diameter of P tends to zero. If $\overline{d}(R^m - A, x) = 0$ then we say that x is a density point of A.

Let $\varphi(A)$ denote the set of all density points of A. Notice that the basis \mathcal{P} has the density property, i.e. for every measurable set A and for almost every $x \in A$, x is a density point of A ([3]). The family of all measurable (L) sets A with $A \subset \varphi(A)$ forms a topology on R^{m} . This topology is called the density topology \mathcal{T}_{d} ([10]). A function $f : R^{\mathsf{m}} \to R$ is approximately continuous at a point x iff it is \mathcal{T}_{d} -continuous at this point.

In a paper [5] it is proven that for every \mathcal{T}_d -cliquish function $f: \mathbb{R}^m \rightarrow \mathbb{R}$ there are \mathcal{T}_d -quasi continuous functions

$$g, h, g_1, g_2, g_3, g_4, f_1, f_2, \dots, f_n, \dots : R^m \to R$$

such that f=g+h, $f=\min(\max(\mathfrak{a}_1,\mathfrak{a}_2),\max(\mathfrak{a}_3,\mathfrak{a}_4))$ and $f=\lim_{n\to\infty} f_1$. In this article we prove that the functions $\mathfrak{g},h,\mathfrak{a}_1,\mathfrak{a}_2,\mathfrak{a}_3,\mathfrak{a}_4,f_1,f_2,\ldots,f_n,\ldots$ can be also almost continuous. A function $f:\mathbb{R}^m\to\mathbb{R}$ is almost continuous iff for every open set $U\subset\mathbb{R}^m\times\mathbb{R}$ containing the graph $\Gamma(f)$ of the function f there exists a continuous function $\mathfrak{g}:\mathbb{R}^m\to\mathbb{R}$ such that $\Gamma(\mathfrak{g})\subset U$ ([13]).

II. BASIC LEMMATA.

Lemma 1.([5]). A function $f: R^m \to R$ is \mathcal{J} -cliquish iff f is measurable (L).

Lemma 2.(compare [5]). A measurable (L) function $f: \mathbb{R}^m \to \mathbb{R}$ is \mathcal{T}_d -quasi continuous at a point x iff for every \$>0 we have $\overline{d}(f^{-1}(f(x) - \$, f(x) + \$), x) > 0$.

Lemma 3.([5]). Assume that A is a G_{δ} set of measure (L) zero, G is an open set and AcG. Then there exists a sequence of pairwise disjoint measurable (L) sets $A_n \subset G-A$ (n=0,1,2,...) such that $\bigcup_{n=0}^{\infty} A = G-A$, $\overline{d}(A_n,x) > O$ for every $x \in A \cup A_n$ (n=0,1,2,...) and $\overline{d}(CR^m-G) \cup A_0$, x > 0 for each $x \in R^m-G$. A set $K \subset R^m \times R$ is called a blocking set for a function $f: R^m \to R$ iff K is a closed set, $K \cap \Gamma(f) = \emptyset$ and for every continuous function $g: R^m \to R$ we have $K \cap \Gamma(g) \neq \emptyset$. A set K is a minimal blocking set of f in $R^m \times R$ if K is a blocking set of f and no proper subset of \mathcal{K} is a blocking set of f in $R^m \times R$ ([7]).

Lemma 4 .(compare [7]). A function $f: \mathbb{R}^m \to \mathbb{R}$ is not almost continuous iff there exists a minimal blocking set Kof f in $\mathbb{R}^m \times \mathbb{R}$. If K is a minimal blocking set for any function $f:\mathbb{R}^m \to \mathbb{R}$ then $p_{\chi}(K)$ is nondegenerated continuum and $p_{\chi}(K) = \mathbb{R}$, when $p_{\chi}(K)$ and $p_{\chi}(K)$ denote the projections of Kon the space \mathbb{R}^m and \mathbb{R} respectively.

Lemma 5. Suppose that $A \subset R$ is a residual G_{δ} set of measure (L) zero ([11] p.15, th.16). Let $B = \bigcup_{i=1}^{m} (R^{i-1} \times A) \times R^{m-i}$ and let C denotes any nondegenerated continuum contained in R^{m} . Then the set $C \cap B$ is not countable.

Proof. From the paper [14] results that there exists a sequence of pairwise disjoint closed sets A_{n} (n=1,2,...) such that $R-A = \bigcup_{n=1}^{\infty} A_{n}$. Then

$$R^{m}-B = (R-A) \times (R-A) \times \dots \times (R-A) =$$

$$= \begin{pmatrix} 0 & A_{i} \\ i_{1}=1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & A_{i} \\ i_{2}=1 & 2 \end{pmatrix} \times \dots \times \begin{pmatrix} 0 & A_{i} \\ i_{m}=1 & m \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & A_{i} \\ 0 & A_{i} \end{pmatrix} \times \begin{pmatrix} A_{i} \times A_{i} \times \dots \times A_{i} \\ 0 & m \end{pmatrix} \cdot$$

Hence

(1)
$$C = (C \cap B) \cup (C - B) = (C \cap B) \cup [C \cap (R^{m} - B)] =$$

$$= (C \cap B) \cup [C \cap \bigcup (A_{i} \times A_{i} \times \ldots \times A_{i})] =$$

$$\stackrel{i_{1}, i_{2}, \ldots, i_{m} = 1}{\overset{i_{1}}{1}} \stackrel{i_{2}}{\overset{i_{2}}{1}} \stackrel{m}{\overset{m}{1}}$$

$$= C \cap B \supset \bigcup \bigcup_{\substack{i_1,i_2,\cdots,i_m=1\\\mathbf{i}}}^{\infty} [C \cap (A_i \times A_i \times \cdots \times A_i)].$$

If $C \cap B$ is a countable set then from the equality (1) follows that *C* is the countable union of pairwise disjoint closed and nonempty sets. But the continuum *C* can not be a countable union of pairwise disjoint closed nonempty sets (see e.g.[4], p. 240 th. 14). Hence the set $C \cap B$ is not countable and the proof of the lemma is finished.

III. THEOREMS. We assume the Continuum Hipotesis. Arange all blocking sets in the space $R^m \times R$ in a transfinite sequence $K_1, K_2, \ldots, K_{\alpha}$, \ldots , $\alpha < \omega_1$ (where ω_1 denotes the first nondenumerable ordinal number). Let $(w_n)_{n=0}^{\infty}$ be an ennumeration of all rationals such that $w_i \neq w_i$ if $i \neq j$ (i,j=0,1,...).

Theorem 1. Every \mathcal{T}_d -cliquish function $f: \mathbb{R}^m \to \mathbb{R}$ is the sum of two \mathcal{T}_d -quasi continuous and almost continuous functions $g,h: \mathbb{R}^m \to \mathbb{R}$.

Proof. From the lemma 1 we have that f is a measurable (L) function. Since the collection \mathcal{P} has the density property , f is an almost everywhere \mathcal{T}_d -continuous function. Let D be the set of all points at which f is not \mathcal{T}_d -continuous and let B be a set from the lemma 5. There is a G_{δ} set E of measure (L) zero such that $D \cup B \subset E$. Let A_n (n=0,1,...) be the sets from the lemma 3, where A=E and $G=R^m$.

For every $\alpha < \omega_{A}$ we choose two points

 $(a^{\mathbf{1}}_{\alpha}, b^{\mathbf{1}}_{\alpha}), (a^{\mathbf{2}}_{\alpha}, b^{\mathbf{2}}_{\alpha}) \in \mathcal{K}_{\alpha}$

such that

$$- \alpha_{\alpha}^{i}, \alpha_{\alpha}^{z} \in B \quad (\alpha < \omega_{1})$$
$$- \alpha_{\beta}^{i} \neq \alpha_{\gamma}^{j} \quad \text{if} \quad \beta \neq \gamma \text{ or } i \neq j \quad (\beta, \gamma < \omega_{1}, i, j=1, 2)$$

The choise of points satisfying these conditions is possible because from the lemma 5 the set $B \cap p(K_{\alpha})$ is not countable. Let

 $\Omega^{\mathbf{i}} = \langle \alpha_{\alpha}^{\mathbf{i}} : \alpha \langle \omega_{\mathbf{i}} \rangle \text{ and } \Omega^{\mathbf{i}} = \langle \alpha_{\alpha}^{\mathbf{i}}, \alpha \langle \omega_{\mathbf{i}} \rangle$

Define

$$g(x) = \begin{pmatrix} f(x) & \text{for } x \in \mathbf{E} - \bigcup_{\alpha}^{2} \Omega^{i} \\ \vdots = 1 \\ b_{\alpha}^{1} & \text{for } x = a_{\alpha}^{1} & (\alpha < \omega) \\ f(x) - b_{\alpha}^{2} & \text{for } x = a_{\alpha}^{2} & (\alpha < \omega) \\ \vdots \\ w_{n} & \text{for } x \in A_{2n} & (n=0,1,2,\ldots) \\ f(x) - w_{n} & \text{for } x \in A_{2n-1} & (n=1,2,\ldots) \end{pmatrix}$$

and

$$h(x) = \begin{cases} 0 & \text{for } x \in \mathbf{E} - \bigcup_{\alpha}^{2} \Omega^{i} \\ i = 1 \\ f(x) - b_{\alpha}^{1} & \text{for } x = a_{\alpha}^{1} \quad (\alpha < \omega_{1}) \\ b_{\alpha}^{2} & \text{for } x = a_{\alpha}^{2} \quad (\alpha < \omega_{2}) \\ f(x) - w_{n} & \text{for } x \in A_{2n} \quad (n = 0, 1, 2, ...) \\ w_{n} & \text{for } x \in A_{2n-1} \quad (n = 1, 2, ...) \end{cases}$$

Obviously functions g, h are \mathcal{T}_d -quasi continuous and f=g+h. Because the graphs $\Gamma(g)$ and $\Gamma(h)$ cut all the blocking sets K_{α} ($\alpha < \omega_1$), so from the lemma 4 the functions g, h are almost continuous.

Theorem 2. Every \mathcal{T}_d -cliquish function $f: \mathbb{R}^m \to \mathbb{R}$ is the limit of sequence of \mathcal{T}_d -quasi continuous and almost continuous functions $f_n: \mathbb{R}^m \to \mathbb{R}$ (n=1,2,...).

Proof. Let D be the set of all points at which the function f is not \mathcal{F}_d -continuous and let B be the set from the lemma 5. There exists a G_{δ} set E of measure (L) zero such that $D\cup B \subset E$. Let sets A_n (n=0,1,2,...) satisfy the conditions of the lemma 3, where $G = R^m$ and A=E. For every $\alpha < \omega_i$ there exist points

$$(\alpha^{i}, b^{i}) \in K_{\alpha}$$
 $(i=1,2,...)$

such that

$$- \alpha_{\alpha}^{i} \in B \quad (\alpha < \omega_{1}; i=1,2,...);$$

$$- \alpha_{\beta}^{i} \neq \alpha_{\gamma}^{j} \quad \text{if } \beta \neq \gamma \quad \text{or } i\neq_{j} (\beta, \gamma < \omega_{1} \text{ and } i, j=1,2,...).$$
There is a sequence of open sets (

There is a sequence of open sets G_{μ} such that

r

$$E = \bigcap_{n=1}^{\infty} G_n \text{ and } G_1 \supset G_2 \supset \ldots \supset G_n \supset \ldots$$

For every n=1,2,... there is a sequence $(A_k^n)_{k=0}^{\infty}$ of measurable (L) sets which are the same as in the lemma 3, where $A_k = A_k^n$, $G = G_n$ and E = A. Let, for n=1,2,...,

$$f_{n}(x) = \begin{cases} b_{\alpha}^{k} & \text{for } x = \alpha_{\alpha}^{k} ; k \ge n \text{ and } \alpha \le \omega_{1} \\ w_{k} & \text{for } x \in A_{k}^{n} \quad (k=1,2,\ldots) \\ f(x) & \text{in the remaining case} \end{cases}$$

Every function f_n (n=1,2,...) is \mathcal{T}_d -quasi continuous and almost continuous and $f = \lim_{n \to \infty} f_n$, so the proof is finished.

Theorem 3. If $f: \mathbb{R}^m \to \mathbb{R}$ is \mathcal{T}_d -cliquish function, then there are four \mathcal{T}_d -quasi continuous and almost continous functions $f_1, f_2, f_3, f_4 : \mathbb{R}^m \to \mathbb{R}$ such that

$$f = \min \left(\max(f_1, f_2), \max(f_3, f_4) \right).$$

Proof. Let *D* be the set of all points at which the function *f* is not \mathcal{T}_d -continuous and let *B* be the set from the lemma 5. There exists a G_{δ} set *E* of measure (L) zero such that $D \cup B \subset E$. Let the sets A_n (n=0,1,2,...) satisfy the conditions of the lemma 3 (for $G=R^m$ and A=E). For every $\alpha < \omega_i$ choose four points

$$\left(\begin{array}{c}a_{\alpha}^{i}, b_{\alpha}^{i}\right) \in K_{\alpha}$$
 (i=1,2,3,4)

such that

$$-a_{\alpha}^{i} \in B \quad (i=1,2,3,4);$$

$$-a_{\beta}^{i} \neq a_{\gamma}^{j} \quad \text{for } \beta \neq \gamma \quad (\beta, \gamma < \omega_{1}) \quad \text{or } i \neq j \quad (i,j=1,2,3,4)$$

For i=1,2,3,4 define the functions

$$f_{i}(x) = \begin{cases} \omega & \text{for } x \in \bigcup^{\infty} A \\ n & n=0 \\ b^{i}_{\alpha} & \text{for } x = \alpha^{i}_{\alpha} (\alpha < \omega) \\ f(x) & \text{in another case} \end{cases}$$

All functions f_i (i=1,2,3,4) are \mathcal{T}_d -quasi continuous and almost continuous.

If $g = \max(f_1, f_2)$ and $g = \max(f_3, f_4)$ then, for $\Omega^i = \{\alpha^i_{\alpha}, \alpha < \omega_1\}$ (i=1,2,3,4), we have

$$g_{1}(x) = f(x) \text{ for } x \in \bigcup_{n=0}^{\infty} \bigcup_{i=3}^{4} A_{4n+i} \cup \bigcup_{i=3}^{4} \Omega^{i},$$

$$g_{1}(x) \ge f(x) \text{ for every } x \in R^{m},$$

$$g_{2}(x) = f(x) \text{ for } x \in \bigcup_{n=0}^{\infty} \bigcup_{i=1}^{2} A_{4n+i} \cup \bigcup_{i=1}^{2} \Omega^{i} \text{ and}$$

$$g_{2}(x) \ge f(x) \text{ for every } x \in R^{m}.$$

Consequently $f = \min(g_1, g_2)$ and the proof is finished.

IV. REMARK. Let $f: R^{m} \rightarrow R$ be an almost continuous function. It is known ([13], Proposition 2 and Proposition 3) that for every closed connected nonempty set $A \subset R^{m}$ the function $f/_{A}$ is almost continuous and $\Gamma(f/_{A})$ is connected set. So every almost continuous function $f: R^{m} \rightarrow R$ has the Darboux property in the Pawlak's sense ([12]) and in the Mišik's sense ([9]). In the case m=1 the function f has the Darboux property. So from the theorems 1,2,3 result the theorems 1,2,3 of the paper [6] respectively.

REFERENCES.

[1] W.W.Bledsoe, Neighbourly functions, Proc. Amer. Math.Soc. 3 (1952), 114-115;

[2] A.M. Bruckner, Differentiation of real functions, Springer-Verlag, Berlin-Heidelberg-New York 1978;

[3] A.M.Bruckner, Differentiation of integrals, Amer. Math. Monthly 78 (1971),1-50;

[4] R. Duda, Wprowadzenie do topologii I, PWN Warszawa 1986;
[5] Z. Grande, T. Natkaniec, E. Strońska, Algebraic structures generated by d-quasi continuous functions, Bull. Pol. Ac. Math. 35 (1987), 717-723;

[6] Z.Grande, E.Strońska, On the quasi-continuous and cliquish functions in the density topology, Zeszyty Matematyczno-Przyrodnicze, Słupsk 8a (1990);

[7] K.R.Kellum, Almost continuous functions on Iⁿ, Fund. Math. LXXIX (1973), 213-215;

[8] W.Kołodziej, Analiza Matematyczna, PWN Warszawa 1978;
[9] L.Mišik, Über die Eigenschaft von Darboux und einiger Klassen von Funktionen, Rev. Roum. Math. Pures et Appl. 11 (1966), 411-430;

[10] C.Goffman, C.J. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505;
[11] J.C. Oxtoby, Measure and category, (in russian) Moscow 1974;
[12] R.J. Pawlak, Przekształcenia Darboux, Acta Universitatis Lodziensis, 1985;

[13] J.Stallings, Fixed point theorems for connectivity maps, Fund. Math. XLVII (1959), 249-263;

[14] W.Sierpiński, Sur une propriété des ensembles F_{σ} linéaires, Fund. Math.44(1929), 216-220.

Received 18 December, 1989