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 ALGEBRAIC STRUCTURES GENERATED BY r ¿ -QUASI CONTINUOUS
 AND ALMOST CONTINUOUS FUNCTIONS ON Rm

 I . PRELIMI NAIRIES. Let ( X, J) be any topological space and

 denotes the real line. A function / : X-+X is called T-quasi

 continuous C J"-cliquish ) at a point xgX iff for every %>0

 and for every neighbourhood Ug.T of the point x there exists

 a 7-open set V such that Q&VaU and ļ fCuD - fCxJ> ļ<$ for
 every tjlcV C oscf<% S> . A function / is J"-quasi continuous

 V

 C J"-ciiquish ) on X iff / is CT-quasi continuous CJ"-cliquish )

 at every point of X ( CI 3 ).

 Let X=Rm. We shall use the following differentiation basis
 ( C8]) . For every k=i,2,. . . let ^ be the family of all

 m-dimensional intervals of the form

 i - i i i-i i i-ii
 ri 1 v f 2 2 v r m ^>1
 t ri -¡r~ • - ) v * [ f - - • - ) v x ••• * l r - ¡r • - ^>1 ļ ) •
 2 2 2 2 2 2

 OD

 where i ,i . . ,i are integers. Let U .
 i 2 m k

 k = i

 Let A <z R be a measurable (L) C i . m. measurable in the

 sense of Lebesgue ) set. For x€Rm we can define the upper
 density of A at a point by

 d Z , ( A x) V = lim * - : d Z , ( i4, A x) V = lim * : - ■
 P+x I I
 P<£j>

 where |^4| denotes m-dimensional measure ( L) of A and the
 symbol P**x denotes that x€p and the diameter of P tends to

 zero. If d( Rm-A , x ) = O then we say that x is a density
 point of A .
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 Let <pCAy denote the set of all density points of A. Notice

 that the basis P has the density property , i.e. for

 every measurable set A and for almost every xeA, x is a

 density point of A ( C33). The family of all measurable ( L)

 sets A with A<zpC Ay forms a topology on Rm. This topology is
 called the density topology T ( [IO]). A function / : is

 d

 approximately continuous at a point x iff it is 7 -continuous
 a

 at this point.

 In a paper C5] it is proven that for every T -cliquish
 a

 function f:R -+R there are T -quasi continuous functions
 a

 S » h » S • » S > ñ » / » / » • • • > / » • • • ^
 1 2 3 4 1 2 n

 '

 such that f=g+ht /=mi ní max( g t g ) , maxi g and /=lim / .
 1 e 3 4 n

 n-*00

 In this article we prove that the functions g, h, g^, g^, g^, g^,
 / ./ ,...,/ ,. . . can be also almost continuous.
 12 n

 A function /: R -*R is almost continuous iff for every open

 set UcF^xR containing the graph TCf!> of the function /
 there exists a continuous function g-.f^+R such that VCg} <zU
 C [13]) .

 1 1 . BASIC LEMMATA.

 Lemma 1.CC53). A function f: R™ -*R is T -cliquish iff /
 a

 is measurable C L) .

 Lemma 2. (compare C53). A measurable ( L) function /; Rm-*R
 is T -quasi continuous at a point x iff for every %>0 we

 Q

 have d( / _1( /Cx^-*,/Cx^+«) , x ) >0.
 Lemma 3#(C53). Assume that A is a set of measure ( L)

 zero» G is an open set and A<zG. Then there exists a sequence

 of pairwise disjoint measurable CL) sets A <z G-A
 n

 CO _
 ( n=o,i,2,. ģ . ) such that U A = G-A , df v A ,xi * > O for every n v n *

 n = O _
 x e A U A C n=o,i,2,. . . ) and df _ CRm-GJ>uA , x 1 > O for

 n v o '

 each x € Rm-G.
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 A set K <z Rm X R is called a blocking set for a function
 f:Rm-*R iff AC is a closed set, K n TC/S> =0 and for every
 continuous function g: Rm-*R we have AC n rCgS> * 0.
 A set AC is a minimal blocking set of / in Rm x R if X is a
 blocking set of / and no proper subset of 9C is a blocking

 set of /in Kmx R ([7]).

 Lemma 4 .(compare C7]). A function /: ß is not

 almost continuous iff there exists a minimal blocking set K

 of / in Rm x If AC is a minimal blocking set for any

 function f : -+R then p^CAO is nondegenerated continuum and
 p CAO = R , when p CAO and p CAO denote the projections of K
 y m x y

 on the space R and £ respectively.

 Lemma 5. Suppose that A <r R is a residual set of
 m

 measure C L) zero CC11] p. 15, th. 16 ). Let B =U ( £V ix A) xRm ^
 i = i

 and let C denotes any nondegenerated continuum contained

 in Rm. Then the set C n B is not countable.

 Proof. From the paper [143 results that there exists

 a sequence of pairwise disjoint closed sets A ( n=i,2,. . . )
 n

 00

 such that R-A = U A . Then
 n

 r>= 1

 Rm-B = C R-A) x ( x . . . x ( R-A> =
 I

 m tv m« «

 OD OD 00

 = ( U A. ) X ( U A. ) x. . . x ( U A. ) =
 i = i i i = i 2 i =i m
 12 m

 OD

 = U ( V j4 x ¿4 x. . . x i4. 1 . V V V L
 i,t,...,i,=i i 2 m
 12 m

 Hence

 (1) C = C CDB S> U C c-ß J> = C Cne J> U [ CO ] =
 ao

 = C CcB ->u[Cn L u CA x A x ... x A. }] J = L iv V J
 i ,i , . . . Á =1 i 2 m
 12 m
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 co

 = c cnB y u U [ L C n CA. x A x ... x A j>1 J . L V. L i J
 i ,t . . ,i =1 i 2 m
 12 m

 If Cn£? is a countable set then from the equality CI)

 follows that C is the countable union of pairwise disjoint

 closed and nonempty sets. But the continuum C can not be

 a countable union of pairwise disjoint closed nonempty sets

 ( see e. g. C 4] , p. 240 th. 14 ). Hence the set CnB is not

 countable and the proof of. the lemma is finished.

 1 1 1 . THEOREMS. We assume the Continuum Hipótesis. Arange

 all blocking sets in the space F^xR in a transfinite sequence
 K ,K , . . . fK , ... , a < o> ( where co denotes the first
 12a 1 1

 nondenumerable ordinal number ) .

 oo

 Let k i w J be an ennumeration of all rational s such that k rv n=0

 w . * w, if t*j C .
 J

 Theorem 1. Every J" -cliquish function / ; Rm-*R is the
 d

 sum of two T -quasi continuous and almost continuous
 a

 functions g>h : R -*R .

 Proof. From the lemma 1 we have that / is a measurable

 ( L) function. Since the collection P has the density

 property , / is an almost everywhere 7 -continuous
 d

 function. Let D be the set of all points at which / is not

 T -continuous and let B be a set from the lemma 5. There is a
 d

 set E of measure C L) zero such that D U B <z E. Let A
 ö n

 ( r>= 0,1,. . . ) be the sets from the lemma 3» where A- E and G=R .

 For every ol < we choose two points

 ( a' . Ò4 ) , C a2 . fc2 ) € K
 a a ol ol ol

 such that

 1 2 „
 - ol , a € B „ C & < & j

 OL OL 1

 - aX if (3 * y or i * j C >
 ft Y i
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 The choise of points satisfying these conditions is possible

 because from the lemma 5 the set B n p CK } is not
 X oc

 countable. Let

 Q1= < a1 : a < a> > and 02= < a2 , a < oo >
 a i ai

 Def i ne

 r 2
 /CxJ> for X ^ - U 0L

 i= 1

 b for X = a <T oc < a> J>
 a at

 &C xJ> = - /Cx->-ò2 for x = a2 C oc < co
 OC OC 1

 w for X € /1 Cn=0,l,2,...J>
 n 2 n

 fCxS>-W ' for X € >4 C 0=1,2,. . . ' n 2 n-1

 and

 r 2
 O for X e E - U

 i = i

 /Cx^-ò1 y for X = a1 C oc < co J> y oc ai

 hCxS> = « 62 for x = a2 C a < a>
 a a i

 fCxS>-'û for X€i4 C n = 0 , 1,2 , . . . ->
 n 2 n

 U> for X € C nsi,2,.. J
 n 2n-l

 Obviously functions h are J" -quasi continuous and
 d

 f=g+H. Because the graphs TC$y and VChS> cut all the

 blocking sets K C a < a> ) » so from the lemma 4 the
 a i

 functions g* h are almost continuous.

 Theorem 2. Every J" -cliquish function £ is the
 d

 limit of sequence of J" -quasi continuous and almost d

 continuous functins f : R -+ R <Tr»=i,2,. . . .X
 Tí

 Proof. Let D be the set of all points at which the

 function / is not J" -continuous and let B be the set from
 d

 the lemma 5. There exists a set E of measure (L) zero

 such that ÜKJB c : E. Let sets A ( n=o,i,2,. . . ) satisfy the
 n

 conditions of the lemma 3, where G = Rm and A=E.

 For every a < there exist points

 ( cl , bv ) € K ( i=i,2,. . . )
 cC a a
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 such that

 - a' €1 B ( Ot < 0 0 ; 1=1,2,. . . ) ;
 a i

 a^ * clĻ if ft * Y or i.*j C ft*y < ^and i,j=i,2,. . . ) .
 There is a sequence of open sets G such that

 r»

 00

 £" = n G and G z> G r> . . . => G => . . .
 1 « r> 12 . . . n

 n=i

 For every n=i,2,. . . there is a sequence ( yl*) k°°0 of
 measurable C L) sets which are the same as in the lemma 3,

 where A% = A™ , G = G and E = A.
 k k n

 Let f f or n=l,2,. . . ,

 k k
 ò for X = a ; k>n and ot< o>
 a i

 / C xJ> = - u> for X € A™ ( k = i , 2 , . . . )
 n k k

 fCxJ> in the remaining case

 Every function / ( n=±,2,. . . ) is J- -quasi continuous and
 n ci

 almost continuous and / = lim / , so the proof r is finished. twOO n , r

 Theorem 3. If /: R is J" -cliquish function, then
 a

 there are four T -quasi continuous and almost conti nous
 a

 functions J / ./ ,f ,/ ; Rm •+ R such that J ±J 2J BJ 4

 f = min ( maxi / ,/ ) , max( ) -

 Proof • Let D be the set of all points at which the

 function / is not 7 -continuous and let B be the set
 a

 from the lemma 5. There exists a Gr set E of measure C L)
 o

 zero such that D U B <z E. Let the sets A C n=o,i,2,. . . )
 n

 satisfy the conditions of the lemma 3 C for G-R and A-E ).

 For every a < a>^ choose four points

 ( K a1 , Ò1 ) } € /( ( i=l,2,3,<4) K a , a } a
 such that

 - a' € B C 1=1,2,3,-4) ;
 a

 - a' * aJ for ft*-y (/?,y < w ) or i*j ( 2.3,4)
 ß y i
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 For 1=1,2,3,4 define the functions

 OD

 w f or x € U A
 n 4n+i

 n = 0

 / <TxJ> = - òv for X = aL C a < go )
 L ot a i

 fCxS> in another case

 All functions /. ( 1=1,2,3,4) are -quasi continuous and
 i d

 al mos t c on t i nuous .

 If # = max ( / ,/ ) and g = max C / ' ,/ ' ) then , for . 1 i 2 2 ' a ' a
 = < av , a < co > C 1=1,2,9,4) , we have

 a 1

 00 4 4

 g CxS> = fCx!> for x«U . u U
 1 4n+i »

 r» = 0 t = 3 v = 3

 g^CxS> > fCxS) for every x e Rm
 CD 2 2

 # C xJ> = /Cx«> for x € U U ¿4 U u Ov and
 2 4n+i

 n = 0 l = 1 l= 1

 ^CxJ> > /CxJ> for every x € ßm.
 Consequently / = min C * anc* the proof is finished.

 IV. REMARK« Let f:Rm-+R be an almost continuous function.
 It is known ([13]» Proposition 2 and Proposition 3 ) that for

 every closed connected nonempty set A <z Rm the function f/¿
 is almost continuous and VC f / is connected set. So every
 almost continuous function /: Rm-*R has the Darboux property
 in the Pawlak * s sense ([123) and in the Mišik's sense ([9]).

 In the case m=i the function / has the Darboux property.

 So from the theorems 1,2,3 result the theorems 1,2,3 of the

 paper C63 respectively.
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