
 Real Analysis Exchange Vol Í6 (í 990-9 J)

 Russell A. Gordon, Department of Mathematics, Whitman College, Walla Walla, WA 99362

 THE INVERSION OF APPROXIMATE AND DYADIC DERIVATIVES USING

 AN EXTENSION OF THE HENSTOCK INTEGRAL

 The Henstock integral integrates all ordinary derivatives and recovers the primitive. This fact

 follows quite easily from the definition. It is natural to ask whether or not it is possible to modify the

 Henstock integral so that it integrates other types of derivatives. This paper addresses this problem

 for approximate derivatives and dyadic derivatives. For similar approaches to these problems see

 Lee [3] and Pacquement [4]. We also prove a convergence theorem for the newly defined integrals.

 We will assume that the reader is familiar with the Henstock integral. Throughout this paper

 V will denote a finite collection of non-overlapping tagged intervals in [a, 6], For V - {(*í,[cí,¿í]) :

 1 < » < N), we will write

 NN N

 /(?) = £ /M*-*)« w = £(*w -**(«)). »«d M?) = !>•■- «)•
 .=i i=i i=i

 This is an abuse of notation, but it is quite convenient. Given a set E and a point t , let p(t , E ) be

 the distance from t to E, CE be the complement of E, and E be the closure of E.

 We begin by considering the approximate derivative. Recall that F has an approximate deriva-
 F (ti F(x)

 tive at X if there exists a measurable set E having x as a point of density such that lim - -

 in ' - 1
 exists. To define an integral that recovers approximate derivatives, we must limit the collection of

 tagged intervals. This is the content of the first definition.

 DEFINITION 1: A distribution S on [a, 6] is a collection of measurable sets {S* : x 6

 [a, 6]} in [a, 6] such that i Ê J, and z is a point of density of Sx. For each x € [a, 6],
 let Jx = {[c, d] : x 6 [c,d] and c, d 6 Sx}. Let 6 be a positive function defined on [a, 6],
 A collection V of tagged intervals is «S-subordinate to 6 if d - c < 6(x) and [c, d] e Xx

 whenever (x, [c, d') 6 V. If in addition V is a partition of [a, 6], then we will often write

 V is «^-subordinate to 6 on [a, b].

 Unless stated otherwise S will represent a fixed but arbitrary distribution on [a, 6]. We must

 first prove that partitions 5-subordinate to 6 exist for each positive function 6. We need the

 following lemma which is due to Romanovski [5]. The proof is essentially an application of the
 Heine- Borei theorem.
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 LEMMA 2: (Romanovski's Lemma) Let f be a family of open intervals in (a, 6) and
 suppose that T has the following properties:

 (1) If ( a,ß ) and (/3,7) belong to Ty then (0,7) belongs to T.

 (2) If (a,/?) belongs to then every open interval in ( a,ß ) belongs to T.
 (3) If ( a,ß ) belongs to T for every interval [a,ß' C ( c,d ), then (c,d) belongs to T.

 (4) If all of the open intervals in (a, ft) contiguous to the perfect set E C [a, ft] belong to

 T, then there exists an interval I in F such that I fi E ^ 0.

 Then F contains the interval (a, ft).

 PROOF: By applying condition (4) to the set [a, 6], we find that T is non-empty. Let H =

 (a, b) - (J and note that H - H C {a, 6}. Let (a, 6) - H = U*(c*>^*)-
 We first prove that each interval (c*, d*) belongs to T . To this end, fix k and let [a, ß' C (c*, d*).

 For each t in [a, /?], there exists an interval It in T that contains t. The collection {/< : t G [<*,/?]} is

 an open cover of [a,/?] and since [0, ß] is compact, there exists a finite subcover {It, : 1 < i < M).

 Let {fj : 0 < j < N} be the set that contains {a, ß] and all of the endpoints of the /ťj's that

 belong to [a,/?], and assume that the points are in increasing order. By condition (2), each of the

 intervals (sj_i,sj) for 1 < j < N belongs to T ■ By repeated application of condition (1), we find

 that ( a,ß ) belongs to T . By condition (3), we conclude that ( ) belongs to T .

 Now condition (1) implies that the set H is perfect. In addition, each of the intervals contiguous

 to H in ( a,b ) belongs to T. By condition (4), the set H must be empty. Repeating the argument

 of the second paragraph, we find that (a, b) belongs to T.

 LEMMA 3: If S is a distribution on [a, 6], then for each positive function 6 on [a, 6]
 there exists a tagged partition of [a, 6] that is <5-subordinate to 6.

 PROOF: Let T be the collection of all open intervals ( u,v ) in (a, 6) for which each interval [s,*] C

 [u, u] has a tagged partition that is ^-subordinate to 6. We will verify that F satisfies the four

 conditions of Romanovski's Lemma. It is clear that T satisfies conditions (1) and (2). Suppose

 that (a, ß) £ T for each interval [o, ß' C (c, d). Choose cj G (c, d ) fi Sc such that c' - c < S(c)

 and dļ G (ci,d) fi Sj such that d - dļ < 6(d). Let Vi be a tagged partition of [ci,di] that is

 «S-subordinate to 6. Then V = (c, [c,ci]) U Pi U (d, [di, d]) is a tagged partition of [c, d] that is

 ^-subordinate to 6. It follows easily that (c,d) G T. This shows that ? satisfies condition (3).

 Now suppose that E is a perfect set in [a, 6] and that each interval contiguous to E in (a, 6)

 belongs to T. Since x is a point of density of 5X, for each x G [o,i>] there exists a positive number

 T)x < 6(x) such that 0 < h < tjx implies

 fi(Sx n[x - h,x]) > h/2 and fi(Sx n [x, x + /i]) > h/2.

 For each positive integer n, let An = {x G E : r¡x > 1/n), and for each integer », let An{ =

 An n [(t' - l)/n,t/n]. Then E = 'JnAn and E = (JnU. ^nt- By the Baire Category Theorem,
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 there exist an interval (u, v) with u, v e E and a set Amj such that E fi (tí, v) ^ 0 and E fi [u, v] =

 Amj [«, v]- Let [c, d] C [u>v]. We will consider one of several cases; the others are similar.
 Suppose that c G E and d £ E. Choose an interval (a,<) contiguous to E in (u,v) such that

 d G (a, t). Since c, s G E , there exists an integer p > m such that c,jÇ Ap. Since Amj is dense

 in E D [u, t>], there exist cj G [c,c + 1 /p] H Amj and G [a - 1 //>» -s] D Amj with ej < Si. Now

 [c, d] = [c, ci] U [c! , *i] U [«1 , «] U [a, d', so it is sufficient to prove that each of these intervals has a

 tagged partition that is ¿-subordinate to S.

 Since [a, d] C [5, *] and ( s , i) € P, the interval [3, d] has a tagged partition that is ¿-subordinate

 to S. Since c, c' € Ap and c' - c < l/p, we have

 fi(Sc D [c,cj]) > (cj - c)/2 and //(5Cl n [c,c!]) > (cj - c)/2.

 Choose a point y € 5cD(c,Ci)n5Cl and let V = (c, [c, y])U(ci, [j/,Ci]). Then V is a tagged partition

 of [c,ci] that is ¿-subordinate to 6. Similarly, the intervals [ci,4i] and [âi,í] have partitions that

 are ¿-subordinate to 6. Hence [c,d] has a partition that is ¿-subordinate to 6. We conclude that

 (u,u) G T and this shows that T satisfies condition (4). This completes the proof.

 DEFINITION 4: The function / : [a, 6] - ► R is ¿-Henstock integrable on [o,6] if there
 exists a real number a such that for each € > 0 there exists a positive function 6 on

 [a, 6] such that 'f(V) - a| < c whenever V is ¿-subordinate to 6 on [a, 6].

 It is clear that the number a is unique. If / is Henstock integrable on [a, 6], then / is S-

 Henstock integrable on [a, 6] for any distribution ¿ on [a, 6] and the integrals are equal. The

 function cf is ¿-Henstock integrable on [a, 6] for any constant c provided that the function / is.

 For the sum of two functions, we first note that if ¿1 and ¿2 are two distributions on [a, 6], then

 ¿ = ¿1 n¿2 = n Si : X G [a, 6]} is a distribution on [a, b]. This yields the following result.

 THEOREM 5: Let / and g be functions mapping [a,i>] into R. If / is ¿j-Henstock
 integrable on [a, b] and if g is ¿2-IIenstock integrable on [a, 6], then / + <7 is ¿-Henstock

 integrable on [a, 6] where ¿ = ¿1 fi ¿2 and /„(/ + g) = /„ / + 9*

 The proofs of the next two results are almost identical to those for the Henstock integral. We

 state these theorems for completeness.

 THEOREM 6: The function / : [a, 6] - ► R is ¿-Henstock integrable on [a, 6] if and only

 if for each e > 0 there exists a positive function S on [a,ò] such that 'f{V 1) - f(P 2)! < (
 whenever Vi and Vi are ¿-subordinate to 6 on [a, 6].

 THEOREM 7: Let / : [a, 6] R.
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 (a) If / is 5-Henstock integrable on [a, 6], then / is «S-Henstock integrable on every
 subinterval of [a, 6].

 (b) If / is «S-Henstock integrable on each of the intervals [o, c] and [c,i>], then / is

 «S-Henstock integrable on [a, 6] and J* f = f + f.

 Suppose that / : [a, b] - ► R is «S-Henstock integrable on [a, 6]. By the previous theorem, the

 function F(x ) = J* f is well-defined on [a, 6]. We next examine the properties of the function F.

 The following version of Henstock's Lemma is valid.

 LEMMA 8: (Henstock's Lemma) Let / : [a, 6] - ► R be «S-Henstock integrable on [o, 6]

 and let F(x) = J* f. Given í > 0, choose a positive function S on [a, 6] so that 'f(V) -
 J* f ļ < € whenever V is «S-subordinate to S on [a, 6]. If V' = {(¿¿»[e, -,</,]) : 1 < i < N } is
 «S-sub ordinate to S, then

 N

 'f(Vi) - F{Vi) I < € and £ |/(ať)(<*ť - a) - ( F(d{ ) - F(«))' < 2e.
 i- 1

 DEFINITION 9: Let F : [a, 6] - ► R and let i G [a, 6]. The function F is «S- continuous at

 X if for each ( > 0 there exists r¡ > 0 such that |F(ť) - i^(x)| < € whenever |ż - x| < T) and

 t € Sx. The function F is 5-differentiable at x if lim - F(x) ex¡sts. We will use
 t - x

 «es,

 F¿(x) to denote the «S- derivative of F at x.

 Due to the nature of «S, we see that F is approximately continuous at x if it is «S-continuous

 at x. Furthermore, if F is approximately continuous on [a, b], then there exists a distribution S on

 [a, 6] such that F is 5 -continuous on [a, b ]. A similar statement holds for approximate derivatives

 and «S-deri vati ves. It is clear that F is «S-continuous at x if it is «S-differentiable at x.

 THEOREM 10: If / : [a, 6] - ► R is «S-Henstock integrable on [o, 6], then the function

 F(x) = J' f is «S- continuous on [a, 6].

 PROOF: Let x € [a, 6] and let c > 0. Choose a positive function S on [a, 6] such that 'f(V) - f* f' <

 e/2 whenever V is «S-subordinate to 6 on [a, 6] and let r) = min{£(x),f/2(l + |/(x)|)}- Let t G Sx

 with |ť - xļ < T}. Since the interval with endpoints t,x and tag x is «S-subordinate to 6, we can use
 Henstock's Lemma to obtain

 I F(t) - F(x)| < I F(t) - F(x) - f(x)(t - x)| + I f(x)(t - x)| < f/2 + |/(x)|r? < t.

 Therefore, the function F is «S-continuous at x.
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 THEOREM 11: If / : [a, 6] - ► R is «S-Henstock integrable on [a, 6], then the function

 F(x) = J* f is «S-diflerentiable almost everywhere on [a, 6] and F's = / almost everywhere

 on [a, 6].

 F(t) - Fix)
 PROOF: Let A+ be the set of all points x in [a, b) such that either lim

 t-»x+ t - X
 «€5,

 exist or does not equal /( x). For each x in >1+, there exists tjx > 0 with the following property:

 for each h > 0 there exists a point x/» in Sx CI (x,x + h ) such that

 'F(xh) - F(x) - f(x)(xh - x)| > rjx(xh - x).

 Let A+ = {x G A+ : t)x > 1 /«}. We will show that n*(A+) = 0 for each positive integer n.

 Fix n and let e > 0. Choose a positive function 6 on [a, 6] such that 'f(V) - J* f ' < e/4n

 whenever V is ¿-subordinate to 6 on [a, 6]. The collection of intervals I = {[x,xfc] : x e /l+,0 <

 h < ¿(x)} forms a Vitali covering of A+. By the Vitali Covering Lemma, there exists a finite

 collection {[c,-,d¿] : 1 < i < N } of disjoint intervals in I such that fi*(A+) < Yïi(d> ~ c«') + ť/2>

 Note that each (c¿, [c,-,dj]) is ¿-subordinate to 6 and that

 (dt - Ci)r,Ci < |f(dť) - F(c,) - f(ci)(di - cť)|.

 Using Henstock's Lemma, we obtain

 ¿w - «o < E ¡r-w ^C' - - '(«x* - 1 = 1 «=1 ^C'
 N

 «•Eiftw-ii-iwi-i«)) i
 i=i

 < n2í/4n

 = c/2.

 It follows that /i*(i4+) < f. Since e > 0 was arbitrary, we conclude that fi*(A+) = 0.

 Since A+ = Unj4j, the set A+ has measure zero. In an analogous manner, we can show that
 Fit)

 H*(A~) = 0, where A~ is the set of all points x in (a, 6] such that either lim - -
 t-x~ t - x
 <€S.

 not exist or does not equal /(x). Since the set of all points x in [a, 6] for which either /$(x) does

 not exist or F^(x) / /(x) is contained in A+ U A~, it follows that F's = f almost everywhere on

 [a, b ].

 COROLLARY 12: If / : [a, 6] -► R is «S-Henstock integrable on [a, 6], then / is a
 measurable function.
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 PROOF: Let F(x) = J* f. Since F is approximately continuous, it is measurable. Now / is
 measurable since it is almost everywhere the approximate derivative of a measurable function. See

 page 299 of Saks [6].

 The next theorem shows that the 5-Henstock integral recovers a function from its ^-derivative

 and hence from its approximate derivative.

 THEOREM 13: Let F : [a, 6] - ► R be ^-continuous and let / : [a, 6] -* R. If F's = / on

 [a, b] except for a countable set, then / is .S-Henstock integrable on [o, 6] and J* f =
 F(x) - F(a) for all i € [a, 6].

 PROOF: Let E = {x 6 [a, 6] : F¿(x) ^ f(x)} and write E = {x*}. Let e > 0. For each k choose
 S(xjc) > 0 so that |/(x*)|¿(xfc) < c/2fc and |F(/)| < ť/2* for each I G IXk that satisfies fi(I) < 6(xk).

 For each x 6 [a, 6] - E choose 6(x) > 0 so that |/(x)/i(/) - .F(/)| < (h(I) whenever I e Ix and

 /i(/) < S(x). This defines a positive function 6 on [a, 6]. Suppose that V is «S-subordinate to 6 on

 [a, 6]. Let Ve be the subset of V that has tags in E and let Vd = V - Ve • For each k, let Vk be

 the subset of Ve that has x* as a tag. We then have

 i/(^)i < E 2^)< E 2f/2*<2f and i^)i<Ei^*)i<Et/2fc<f'
 k k k k

 and hence

 I f(V) - F{V) I < I f{Vd) - F(Vd)' + 'f(VE)' + 'F(Ve)' < e(6 - a) + 2c + e.

 Therefore the function / is «S-Henstock integrable on [a, 6] and f = F(b) - F(a). A similar

 argument shows that J* f = F(x) - F(a) for all x € [a, 6].

 We next give a descriptive characterization of the «S-Henstock integral. As is to be expected,

 this characterization involves a notion of absolute continuity. The next definition provides the

 generalization that is needed in our case. See Lee [3] for another absolute continuity condition

 related to this type of integral.

 DEFINITION 14: Let F : [a, 6] - ► R and let E C [a, 6]. The function F is AC s on E if
 for each f > 0 there exist a positive number and a positive function 6 on E such that

 1^(^)1 < f whenever V is S- subordinate to 6, all of the tags of V are in E , and ft(V) < rj.
 The function F is ACGs on E it E can be written as a countable union of sets on each

 of which the function F is AC s •

 It is easy to verify that an ACGs function on [a, 6] is <S-continuous on [a, 6]. We next prove

 two simple lemmas, then a descriptive characterization of the «S-Henstock integral. See Gordon [1]

 for a similar characterization of the Henstock integral.
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 LEMMA 15: Suppose that F : [a, 6] - ► R is ACGs on [a, 6] and let E C [a, 6]- If n(E) = 0,

 then for each ť > 0 there exists a positive function 6 on E such that |-F(P)| < € whenever

 V is ¿-subordinate to 6 and all of the tags of V are in E.

 PROOF: Let E = ļjn En where the En s are disjoint and F is ACs on each En. Let ť > 0. For
 each n, there exist a positive function 6n on En and a positive number rjn such that l-fXP)! < c/2n

 whenever V is ¿-subordinate to Sn, all of the tags of V are in Eny and fi(V) < t]n. For each n, choose

 an open set On such that En C On and n(On ) < ijn- Let ¿(x) = min{£n(x),p(x,CO„)} for x 6 En.

 Suppose that V is ¿-subordinate to 6 and that all of the tags of V are in E. Let Vn be the subset of

 V that has tags in En. Note that fi(Vn) < and compute 1^(^)1 < £n < £nf/2n < e.
 This completes the proof.

 LEMMA 10: Suppose that / : [a, 6] - ► R and let E C [a, 6]. If p(E) = 0, then for each f > 0

 there exists a positive function S on E such that 'f(V)' < e whenever V is ¿-subordinate
 to 6 and all of the tags of V are in E.

 PROOF: For each positive integer n, let En = {x 6 E : n - 1 < |/(x)| < n} and let e > 0. For

 each n, choose an open set 0„ such that En C On and /*(On) < e/n2n. Let 6(x) = p(x,COn ) for

 x € En. Suppose that V is »^-subordinate to S and that all of the tags of V are in E. Let Vn be the

 subset of V that has tags in En and compute ' f(V)' < 'f{Vn)' < ^2n n/x(0„) < f/2n < f-
 This completes the proof.

 THEOREM 17: A function / : [a, 6] - ► R is «S-Henstock integrable on [a, b] if and only if

 there exists an ACGs function F on [a, 6] such that F's = f almost everywhere on [a, 6],

 PROOF: Suppose first that / is <S-Henstock integrable on [a, t] and let .F(x) = J' /• Then F's = f

 almost everywhere on [a, 6] by Theorem 11. For each positive integer n, let En = {x 6 [a, 6] :

 n - 1 < |/(x)| < n}. Fix n and let f > 0. Since / is «S-Henstock integrable on [a, 6], there exists a

 positive function S on [a, 6] such that | f(P)- F(V)' < ( whenever V is ¿-subordinate to 6 on [a, 6].

 Let r¡ = f/n. Suppose that V is ¿-subordinate to all of the tags of V are in En, and fi(V) < r/.

 Then using Henstock's Lemma, we obtain

 'F(V)' < I F(V) - f{V)' + 'f{V)' < e + nr, = 2e.

 Hence the function F is ACs on En and it follows that F is ACGs on [a, 6].

 Now suppose that there exists an ACGs function F on [a, 6] such that F's = / almost ev-

 erywhere on [a, b]. Let E = {x G [a, 6] : F$(x) £ /(x)} and let € > 0. For each x G [a, 6] - E

 choose S(x ) > 0 so that |/(x)/i(/) - F(I) | < whenever I € Jx and fi(I) < ¿(x). By the
 previous two lemmas, we can define Ä(x) > 0 on E so that 1/(^)1 < ( and |.F(P)| < e whenever V

 is ¿-subordinate to 6 and all of the tags of V are in E. This defines a positive function 6 on [a, 6].
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 Suppose that V is «S-subordinate to S on [a, 6]. Let Ve be the subset of V that has tags in E and

 let Vd = V - Ve- We then have

 I f(V) - F(V) I < 'f(Vd) - F(Vd) I + 1/(^)1 + 'F(Ve)' <e(b-a) + e + 1.

 Therefore, the function / is «S-Henstock integrable on [a, 6] and J * f - F(b ) - F(a).

 We finish this part of the paper by examining some of the properties of ACGs functions. We

 begin by defining BVG s functions and proving, as should be the case, that ACGs functions are

 BVGS.

 DEFINITION 18: The function F : [a, 6] -+ R is BVs on E C [a, 6] if there exist a
 positive function 6 on E and a positive number M such that |.F(P)| < M whenever V is
 S- subordinate to 6 and all of the tags of V are in E. The function F is BVG s on E if
 E can be written as a countable union of sets on each of which F is BVs •

 THEOREM 19: Let F : [o, 6] - ► R and let E C [o, b]. If F is AC s on E , then F is BVs on

 E. Consequently, an ACGs function on [o, 6] is BVGs on [a, 6].

 PROOF: Since F is 5-continuous on E, there exists a positive function ¿j on E such that |F(/)| < 1

 whenever I 6 Tx and fi(I) < ¿i(x). Since F is AC s on E, there exist a positive function S < 6ļ on

 E and a positive number rj such that ^(P)! < 1 whenever V is «5-subordinate to S , all of the tags

 of V are in E , and ļi{V) < r¡. Let N be the least positive integer such that (6 - a)/N < rj and let

 f /• - a • b - ai
 Ki - f [a + (t- /• i)-^-,a+ - a • b - ai J

 for 1 < i < N . Suppose that V is ^-subordinate to S and all of the tags of V are in E. For each »,

 let V, be the subset of V that has intervals in Ki and let V<¡ = V - (J^ Vi. Note that Vo contains

 at most N - 1 intervals and |F(/)| < 1 for each of these intervals. We thus have

 N N

 'F(V)' < 'F(Vo)' + ^ 'F(Vi)' <N- 1 + £ 1 = 2JV - 1.
 ¿=i i=i

 Hence the function F is BVs on E.

 The best case scenario would be for ACGs functions to be approximately differentiate almost

 everywhere. This is indeed the case. We need the following theorem which can be found on page

 295 of Saks [6].

 THEOREM 20: Let F : [a,J] -+ JJ be measurable and let E C [o,6]. Then at almost

 every point of E either F is approximately differentiable or F^p = F¿p = +oo and
 EÌP = £»-p = -oo.

 161



 THEOREM 21: Let f : [o,ô] -» Ā be measurable and let E C [a, 6]. If F is BVs on E ,
 then F is approximately differentiable almost everywhere on E. Consequently, if F is

 ACGs on [a, 6], then F is approximately differentiable almost everywhere on [a, 6].

 PROOF: Let A = {x 6 E : 7^p(x) = +oo}. By the above theorem, it is sufficient to prove that
 H*(A) = 0. Suppose that n'(A) = a > 0. There exist a positive function 6 on E and a positive

 number M such that 1^(^)1 < M whenever V is ¿»-subordinate to 6 and all of the tags of V are in

 E. Choose L such that La/2 > M. For each x € A and each h > 0, there exists x ^ 6 5In(x,x + /i)

 such that ^X/l^ - > L. The collection I = '0 < h < ¿(x)} is a Vitali cover of
 í/l

 A. Let {[cj,d,] : 1 < » < N} be a collection of disjoint intervals in J such that - c¿) > a/2.

 The tagged partition V = {(c¿, [c¿, d,]) : 1 < ť < A^} is «S-subordinate to 6 and all of the tags of V

 are in E. However,

 N N

 F(P) = - F(ci)) > - C.0 > W2 > M,
 «=1 i= 1

 a contradiction. It follows that n*(A) = 0.

 The last property we will prove is also a result to be expected. If two ACGs functions have

 the same approximate derivative almost everywhere, they should differ by a constant. This fact

 follows from the next theorem and the uniqueness of the «S-Henstock integral.

 THEOREM 22: Let / : [a, 6] -> R.

 (a) If / = 0 almost everywhere, then / is ¿>-Henstock integrable on [a, 6] and J* f = 0.

 (b) If / > 0 on [a, 6] and «S-Henstock integrable on [a, 6], then /fl6/ > 0.

 (c) If / > 0 almost everywhere and 5-Henstock integrable on [a, 6], then J* f > 0.

 PROOF: Part (a) follows from the fact that the 5-Henstock integral includes the Henstock integral

 and part (b) is obvious. Suppose that / > 0 almost everywhere on [a, b] and «S-Henstock integrable

 on [a, 6]. Let f' = max{/, 0} and let /2 = / - f'. Then /1 > 0 on [a, 6] and /2 = 0 almost
 everywhere on [a, 6]. Since /2 and f' = / - /2 are «S-Henstock integrable on [a, 6], we find that

 /oÒ/ = /afc/l+/:/2>0.

 THEOREM 23: Let F : [a, 6] - ► R be ACGs on [a, 6].

 (a) If F¿ = 0 almost everywhere on [a, 6], then F is constant on [a, 6].

 (b) lff¿>0 almost everywhere on [a, 6], then F is nondecreasing on [a, 6].

 PROOF: Let / be the function that equals when it exists and equals 0 otherwise. Then by

 Theorem 1 7, the function / is ¿>-Henstock integrable on [a, 6] and F(x) - F(a) = f* /. The theorem

 now follows from the previous theorem.
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 It should be noted that a rather crucial and obvious question has been left unresolved. Is every

 Denjoy-Khintchine integrable function 5-Henstock integrable? This amounts to asking whether or

 not an AC G function is ACGs.

 We now turn to the dyadic derivative of a function and discuss some of its properties. The

 ideas for this section were generated from papers by Kahane [2] and Pacquement [4]. As the name

 indicates, the dyadic derivative is tied to the dyadic rational numbers. For the remainder of this

 paper D will represent the set of dyadic rational numbers in [0, 1]. An interval with endpoints

 in D will be called a dyadic interval. Two numbers a and b are said to be consecutive dyadic

 rational numbers if there exist integers p and n such that a = p/2n and b = (p + l)/2n. Let

 X G [0, 1] - D. For each positive integer n, let xn = p/2n where p is the unique integer satisfying

 p/2n < X < (p + l)/2n. Note that x„ < x < xn + 2"n for all n.

 DEFINITION 24: Let F : D -+ R, let x € [0, 1] - D , and let r G D.
 (a) The function F is dyadic continuous at x if lim ( F(xn + 2-n) - .F(xn)) = 0. The fune-

 Tl- *00

 tion F is dyadic continuous at r if lim F(r - 2"n) = F(r) and lim F(r + 2~n) = F(r).
 n- ► oo n- ^oo

 (b) The function F has a dyadic derivative at x if the limit

 lim *X*n + 2-
 n- ► oo 2~n

 exists. The function F has a dyadic derivative at r if both the limits

 ^ f(r-2-)-f(r) and F(r + 2-')-F( r)
 n- >oo - 2~ n n- »-co 2~ n

 exist and are equal. We will use F¡¡(x) to denote the dyadic derivative of F at x.

 Here are several obvious statements. A continuous function is dyadic continuous. If F has

 a derivative at x, then F has a dyadic derivative at x. If F has a dyadic derivative at x, then

 F is dyadic continuous at x. Only the values of F on D are important, that is, F is countably

 determined. We present some simple examples, then prove a result on monotonicity.

 EXAMPLE 25: (a) Let F(x) = Xq(x), the characteristic function of the rational numbers. For

 this function F¡¡ = 0 for all points in [0, 1], F'av = 0 for all points in [0, 1] - Q, and F' does not exist

 for any point in [0, 1].

 (b) Let x 6 [0, 1] - D and let E be the closed set {xn} U {x} U {xn + 2-n}. Let F(xn) = 1/n =

 F(xn + 2~n) for each n and let F(x) = 0. Define F to be linear on the intervals contiguous to E.

 Then F is continuous at x, F'd(x ) = 0, and F'(x ) does not exist.

 (c) Let F : [0, 1] - ► R be approximately differentiate on [0, 1] and suppose that F'ap{x) ^ 0 for all

 x € [0, 1]. Define G : [0, 1] - » R by G(x) = F(x) for x in [0, 1] - D and G(x) = 0 for x in D. Then
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 G is approximately differentiable on [0, 1] - D and dyadic differentiable on [0, 1], but G'd / G'ap on

 [0, 1 )-D.

 THEOREM 26: Let F : [0, 1] - ► R be continuous and suppose that F¿ exists at each
 point of [0, 1]. If F'd > 0 on [0, 1], then F is increasing on [0, 1].

 PROOF: Since F is continuous on [0, 1], it is sufficient to prove that F is increasing on D. Let

 s, t G D with s < t and suppose that F(t) < F(s). Express s and t with the common denominator

 2n. There exist points 6 [s,<] D D with denominator 2N such that ts ~ SN = 2~N and
 F(tpf) < F(sn)- There exist points ss+i,tN+i G H D with denominator 2^+1 such
 that ts+ 1 - »N+ 1 = 2~N~l and F(ts+ 1) < F($s+ 1). Continue this process to obtain a nested

 sequence {[sn, <„]}£/ of closed intervals such that an,<„ have denominator 2", tn - sn = 2-n, and

 F(tn) < F{9n)- Let {z} = nîvt3'»'*'»] an<^ observe that

 F>(Z) d ' = Um F(tn)-F(sn) < F>(Z) d ' = tn-sn

 a contradiction. We conclude that F(s ) < F(t).

 COROLLARY 27: Let F : [0, 1] - ► R be continuous and suppose that F¡¡ exists on [0,1].

 (a) If Fj > 0 on [0, 1], then F is nondecreasing on [0, 1].

 (b) If F¿ = 0 on [0, 1], then F is constant on [0, 1].

 We now define a Henstock type integral that integrates dyadic derivatives. As in the first part

 of the paper, the key idea is to limit the collection of potential tagged intervals. Since we want to

 recover dyadic derivatives, we limit ourselves to tagged intervals with dyadic endpoints. For each

 X € [0, 1] - Z), let Ix be the collection of all intervals in [0, 1] of the form [zn,i„ + 2-n]. For each

 X € D, let Î* be the collection of all intervals in [0, 1] of the form [x - 2-n,x], [x,x + 2-n], and

 [x - 2"n,x + 2"n].

 DEFINITION 28: Let ¿bea positive function defined on [0, 1], A collection V of tagged
 intervals is dyadic subordinate to 6 if d - c < S(x ) and [c, d] € Tx whenever (x, [c,d]) € V.

 If in addition V is a partition of the dyadic interval [a, 6], then we will write V is dyadic

 subordinate to 6 on [a, 6].

 Once again we must prove that such partitions exist. Of course, the best we can hope for

 is that intervals with dyadic endpoints have partitions that are dyadic subordinate to 6 for any

 positive function 6. The next two results show that such partitions do indeed exist.

 THEOREM 29: If ¿ is a positive function defined on [0, 1], then there exists a tagged
 partition of [0, 1] that is dyadic subordinate to S.
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 PROOF: Suppose that there is no tagged partition of [0, 1] that is dyadic subordinate to 6. Bisect

 the interval [0, 1]. Let I' be one of the subintervals for which there is no tagged partition of I'

 that is dyadic subordinate to 6. Now bisect the interval I' and let Iļ be one of the subintervals for

 which there is no tagged partition of Iļ that is dyadic subordinate to 6. Continue this process to

 obtain a nested sequence {/„} = {[flrn&n]} of closed intervals such that there is no tagged partition

 of Jn that is dyadic subordinate to S. Note that an and 6n are consecutive dyadic rational numbers

 with denominator 2n. Let {z} = fļn/n. If z £ D , then an = zn and bn = zn + 2~n for each n.

 There exists an integer N such that [a^,6^] C (z - S(z),z + ¿(2)). Hence (z, [a^,6^r]) is dyadic
 subordinate to 6, a contradiction. If z 6 D> then either z = an for all n > K or z = bn for all

 n > A'. In either case, there exists an integer N such that (z, [o^r,6^]) is dyadic subordinate to 6,

 a contradiction. We conclude that there is a tagged partition of [0, 1] that is dyadic subordinate to
 6.

 COROLLARY 30: Let a, 6 6 D with a < b. If S is a positive function defined on [a, 6],
 then there exists a tagged partition of [a, ft] that is dyadic subordinate to 6.

 PROOF: If a and b are consecutive dyadic rational numbers with denominator 2n, then there is a

 tagged partition of [a, 6] that is dyadic subordinate to S as in the proof of Theorem 30. Since every

 interval with dyadic rational endpoints can be decomposed into a finite number of intervals with

 consecutive dyadic rational numbers as endpoints, the proof is complete.

 DEFINITION 31: Let / : [0, 1] - ► R and let [a, 6] be a dyadic interval in [0,1]. The
 function / is dyadic Henstock integrable on [a, 6] if there exists a real number a such
 that for each c > 0 there exists a positive function 6 on [a, 6] such that 'f(P) - a| < e

 whenever V is dyadic subordinate to 6 on [a, 6]. We will write a = (d) f* f.

 It is clear that every Henstock integrable function on the dyadic interval [a, 6] is dyadic Henstock

 integrable on [a, 6] and that the integrals are equal. The reader can verify that the dyadic Henstock

 integral satisfies the elementary properties of an integral such as linearity and integrability on

 dyadic subintervals. Suppose that / is dyadic Henstock integrable on the dyadic interval [a, 6]. The

 function F defined by F(x ) = (d) J' f is assumed to have [0,6] fl D as its domain. The following
 version of Henstock's Lemma holds.

 LEMMA 32: (Henstock's Lemma) Let / : [0, 1] - ► R be dyadic Henstock integrable on

 the dyadic interval [a, b] and let F(x) = (d) J' f. Given c > 0, choose a positive function
 S on [a, 6] so that 'f(V) - .F(&)| < € whenever V is dyadic subordinate to 6 on [a, 6]. If
 •Pļ = {(5j, [cj,dj]) : 1 < i < N} is dyadic subordinate to 6> then

 N

 'f(Vi) - F{VX) I < € and £|/(*)(4 - cť) - (F(dť) - F(«))' < 2c.
 ¿=1
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 We next consider the properties of the indefinite dyadic Henstock integral. The arguments are

 quite similar to those for the S-Henstock integral.

 THEOREM 33: Let / : [0, 1] - ► R and let [a, 6] be a dyadic interval in [0, 1]. If / is dyadic

 Henstock integrable on [a, 6] and F(x ) = (d) f* f, then F is dyadic continuous on [a, 6].

 PROOF: Let x G [a, 6] and let € > 0. Choose a positive function 6 on [a, 6] such that | f(V) -

 F(V)' < f/2 whenever V is dyadic subordinate to 6 on [a, 6], and choose a positive integer N such

 that 2~n < 6(x ) and 'f(x)'/2N < ť/2. Suppose first that x G [a, 6] - D. The tagged interval

 (x, [xn, xn + 2~n]) is dyadic subordinate to S for all n > N and using Henstock's Lemma, we obtain

 I F(xn + 2~n) - F(xn)| < |F(x„ + 2"n) - F(xn) - /(x)2~n| + | /(x)j/2* < ť/2 + e/2 = ť.

 Hence the function F is dyadic continuous at x. Now suppose that x G [a, 6] D D. The tagged

 interval (x, [x,x + 2-n]) is dyadic subordinate to S for all n > N and using Henstock's Lemma, we
 obtain

 I F(x + 2"n) - F(x)| < I F(x + 2"n) - F(x) - /(x) 2"n| + |/(x)|/2n < c/2 + e/2 = €.

 It follows that lim F(x + 2-n) = F(x). Similarly lim F(x - 2-n) = ^(x). Hence the function F
 n- ► oo n- ►oo

 is dyadic continuous at x.

 THEOREM 34: Let / : [0, 1] - ► R and let [a, 6] be a dyadic interval in [0,1]. If / is

 dyadic Henstock integrable on [a, 6] and F(x) = ( d ) J' fy then F'd = f almost everywhere
 on [a,ò].

 PROOF: Let A = {x G [a, 6] - D : F¡¡(x ) ^ /(*)}• For each x G A there exists a positive number

 Tļx with the following property: for each ß > 0 there is an interval I G Ix with /i(J) < ß such that

 |/(x) - F(I)/fi(I)' > T)x. Let An = {x G A : ijx > 1/n}. Since A = |Jn An , it is sufficient to prove

 that //*(>!„) = 0 for each n.

 Fix n and let € > 0. Choose a positive function S on [a, 6] such that 'f(V) - F(V)' < t/An

 whenever V is dyadic subordinate to S on [a, 6]. The collection of intervals

 I = {I : (x, J) is dyadic subordinate to 6 and |/(x)/i(/) - .F(/)| > T)xfi(I)}
 x€An

 forms a Vitali cover of An. By the Vitali Covering Lemma, there exists a finite collection {/,• : 1 <

 ť < N} of disjoint intervals in I such that /í*(í4„) < + í/2. For each », choose Xj G An
 such that (xi,Ii) is dyadic subordinate to S. Using Henstock's Lemma, we obtain

 NN N

 E ^7») * E l/(*.-K/.0 - nii)' h* < « E I - F(Ii)' < n(2e/4n) = c/2.
 i=i »=1 i=i
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 Hence fi*(An) < e and it follows that ¡i*{An) = 0 since e > 0 was arbitrary.

 The dyadic Henstock integral integrates all dyadic derivatives and recovers the primitive. The

 proof of this result and those that follow are so similar to the corresponding results in the first part

 of the paper that they are omitted.

 THEOREM 35: Let F : [0, 1] - * R be dyadic continuous and let / : [0, 1] - ► R. If F¡¡ = /

 on [0, 1] except for a countable set, then / is dyadic Henstock integrable on [0, 1] and

 (d) JÓ f = F(x ) - F(°) for a11 X*D-

 DEFINITION 36: Let F : [0, 1] - ► R and let E C [0, 1]. The function F is AC d on E if
 for each e > 0 there exist a positive number q and a positive function 6 on E such that

 < € whenever V is dyadic subordinate to all of the tags of V are in and
 H(P) < V' The function F is ACGd on E if E can be written as a countable union of
 sets on each of which the function F is AC¿.

 THEOREM 37: A function / : [0, 1] - * R is dyadic Henstock integrable on [0,1] if and

 only if there exists an ACGd function F on [0, 1] such that F'd = f almost everywhere
 on [0, 1].

 THEOREM 38: Let F : [a,b] -+ R be ACGd on [a, 6].

 (a) If F'd = 0 almost everywhere on [a,i>], then F is constant on [a, 6].

 (b) If F¿ > 0 almost everywhere on [a, 6], then F is nondecreasing on [a, 6].

 Here are some unanswered questions for this section. Is there a continuous function that has

 a dyadic derivative at each point, but is not differentiable on an uncountable set? Does an ACGd

 function have a dyadic derivative almost everywhere?
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