Real Analysis Exchange Val 16 (1990-91)

T.K.Dutta and S.N.Mukhopadhyay, Department of Mathematics, The University of Burdwan, Burdwan 713104, West Bengal, INDIA

On Riemann summable trigonometric series

1. Introduction : It is known that if a trigonometric series is summable (R, k), $k=2,3,4$, then its (R, k)-sum is P^{k}-integrable and the series is a P^{k}-Fourier series (For $k=2$ see [5] and for $k=3$ or 4 see [3]). In the present paper we have introduced three integrals : the R^{k}-integrals, $k=2,3,4$, which are more appropriate for (R, k)-summable trigonometric series than the P^{k}-integrals. Then we have shown that if a trigonometricseries is summable (R, k) its (R, k) sum is R^{k}-integrable. The advantages of these integrals are that they have the power of the first order integral, as in $[4,7]$, and consequently the Euler-Fourier formulae for the coefficients of the trigonometric series can be written in its usual form. We have given the proof by obtaining first a result on formal multiplication for Riemann summable trigonometric series analogous to that for Cesaro summable trigonometric series considered in [6; 13, p.370] which has some importance in itself.
2. Definitions and notation : Let f be a real valued function defined on the closed interval $[a, b]$. Let $x_{0} \in(a, b)$ and $f\left(x_{0}\right)=\alpha_{0}$. If there exist real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ depending on x_{0} but not on h such that

$$
f\left(x_{0}+h\right)=\sum_{r=0}^{m} \frac{h^{I}}{\Gamma!} \alpha_{r}+o\left(h^{m}\right)
$$

as $h \rightarrow 0$, then α_{m} is called the Peano derivative of order m of f at x_{0} and is denoted by $f_{(m)}\left(x_{0}\right)$. Taking one sided limit one gets the definition of Peano derivative at the end points of the interval.

For a given integer $s \geqslant 0$ and a number $h>0$ let $x_{0} \pm \frac{S}{2} h \in(a, b)$. Then the s th central difference $\Delta_{s}\left(f ; x_{0}, h\right)$ of f corresponding to x_{0} and h is defined by

$$
\Delta_{s}\left(f ; x_{0}, h\right)=\sum_{j=0}^{s}(-1)^{j}\binom{s}{j} f\left(x_{o}+\left(\frac{s}{2}-j\right) h\right)
$$

The upper Riemann derivate of f at x_{0} of order s is defined as

$$
\overline{R D}^{s} f\left(x_{0}\right)=\lim _{h \rightarrow 0} \sup _{s}\left(f ; x_{0}, h\right)
$$

Replacing 'lim sup' by 'lim inf' one gets the definition of the lower Riemann derivate $\underline{R D}^{s} f\left(x_{0}\right)$. If $\overline{R D}^{s} f\left(x_{0}\right)=\underline{R D}^{s} f\left(x_{0}\right)$, the common value is called the Riemann derivative of f at x_{0} of order s and is denoted by $\operatorname{RD}^{s} f\left(x_{0}\right)$.

We shall write

$$
\begin{aligned}
& A_{0}(x)=\frac{1}{2} a_{0} \\
& A_{n}(x)=a_{n} \cos n x+b_{n} \sin n x, n \geqslant 1 \\
& B_{n}(x)=b_{n} \cos n x-a_{n} \sin n x, n \geqslant 1
\end{aligned}
$$

The upper and lower (R, k) sums of the series

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x) \tag{T}
\end{equation*}
$$

at x_{0} are defined to be the upper and lower limits of

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} A_{n}(x) \cdot\left(\frac{\sin n h}{n h}\right)^{k}
$$

as $h \rightarrow 0$. If they are equal and finite then the series (T) is said to be summable (R, k) at x_{0} to the common value. Let the series (T) be integrated term - by - term k times and let the integrated series converge everywhere to a continuous function ϕ. Then

$$
\frac{\Delta_{k}\left(\phi ; x_{0}, 2 h\right)}{(2 h)^{k}}=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} A_{n}(x) \cdot\left(\frac{\sin n h}{n h}\right)^{k}
$$

Thus $\overline{R D}^{k} \phi\left(x_{0}\right)$ and $\underline{R D}^{k} \phi\left(x_{0}\right)$ are the upper and lower (R, k) sums of the series (T) at x_{0}.

$$
\text { If } f \text { has the Darboux property in an interval } I \text {, then }
$$ we shall write $f \in \mathscr{D}$ in I. If E is Lebesgue measurable then $|E|$ will denote the measure of E.

A function f is said to have the property $\overline{\mathrm{R}}$ (respectively \underline{R}) in an interval $[a, b]$ if for every perfect set $P \subset[a, b]$ there is a portion of P in which f rostrictad to P is upner (respectively lower) semi-continuous and we write $f \in \bar{R}$ (rosnectively $f \in \underline{R}$) ir $[a, b]$.

Following Zygmund [e.g. see 13, I, p.53, p.364, p.366] we shall say that two series $\sum_{n=0}^{\infty} u_{n}(x)$ and $\sum_{n=0}^{\infty} v_{n}(x)$ are uniformly equi-summable (R, k) if the difference $\sum_{n=0}^{\infty}\left[u_{n}(x)-v_{n}(x)\right]$ is uniformly summable (R, k) to zero and the series $\sum_{n=0}^{\infty} u_{n}(x)$ and $\sum_{n=0}^{\infty} v_{n}(x)$ are uniformly equi-summable (R, k) in tine wider sense if $\sum_{n=0}^{\infty}\left[u_{n}(x)-v_{n}(x)\right]$ is uniformly summable (R, k) (not necessarily to zero).

3. Convexity theorems :

Lemma 3.1. Suppose that
i) f is upper semi-continuous in $[a, b]$
ii) $\overline{\mathrm{RD}}^{2} \mathrm{f} \geqslant 0$ in (a, b) except on an enumerable set $E \subset(a, b)$
iii) $\lim _{h \rightarrow 0+} \frac{\triangle_{2}(f ; x, h)}{h} \geqslant 0$ for $x \in E$.

Then f is convex in $[a, b]$.

This is froved in [13, I, p.328, Lemma 3.20]. (In fact the result there is for continuous f but the same oroof will suffice for upper semi-continuous f).

Lemma 3.2. Supnose that
i) $f \in \bar{R} \cap D$ in $[a, b]$
ii) $\overline{R D}^{2} f \geqslant 0$ in (a,b) except on an enumerable set $E \subset(a, b)$
iii) $\lim \sup _{h \rightarrow 0^{+}} \frac{\Delta_{2}(f ; x, h)}{h} \geqslant 0$ for $x \in E$.

Then f is continuous and convex in $[a, b]$.

Proof. Let G be the set of all points x in $[a, b]$ such that there is a neighbourhood of x relative to $[a, b]$ in which f is upper semi-continuous. Clearly G is open in $[a, b]$. Set $P=[a, b] \sim G$. Then P is closed. Clearly P cannot have isolated points. For, let $x_{0} \in P$ be an isolated point of F. So, if $x_{0} \in(a, b)$, there is $\sigma>0$ such that $\left(x_{0}-\sigma, x_{0}\right) \cup\left(x_{0}, x_{0}+\sigma\right) \subset G$. Since in these intervals f is upper semi-continuous, by Lemra 3.1 , f is convex there. Theretore, $\lim _{x \rightarrow x_{0}^{-}} f(x)$ and $\lim _{x \rightarrow x_{0}^{+}} f(x)$ exist ard since $f \in \mathcal{X}$ in $[a, b], \lim _{x \rightarrow x_{0}^{-}} f(x)^{x \rightarrow x_{0}^{-}}=f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} f(x)$. So, $x_{0} \in G$, which is a contraaiction. Similarly a and b cannot be isolated points of P. Thus P is perfect.

Now we show that P is void. Suppose the cbntrary. Since $f \in \bar{R}$ in $[a, b]$, there is a portion of P, say $J \cap P \neq \phi$, in which
f restricted to P is upper semi-continuous. Now the set $J \sim P$, the complement of P in J, is open (relative to J) and $J \sim P \neq \dot{\phi}$. For otherwise $J \subset P$ and by the property \bar{R} there is an open interval $J_{1} \subset J$ such that f is upper semi-continuous on J_{1} which implies $J_{1} \subset G$ and so $J_{1}=J_{1} \cap P \neq \phi$.This is contradiction. If I is any component interval of $J \sim P$ then f is upper semi-continuous in I. By Lemma 3.1 and Darboux property of f it is convex in the closure \bar{I} of I and hence f is continuous in \bar{I}. From this we conclude that f is upper semi-continuous in the whole of J. For, let $\xi \in P \cap J$ and $\left\{\xi_{n}\right\}$ be any sequence converging to ξ. If ξ is an isolated ooint of P from one side and $\left\{\xi_{n}\right\}$ tends to ξ from that side, then since f is continuous in the ciosure of each component interval of $J \sim P$, $\lim _{n \rightarrow \infty} f\left(\xi_{n}\right)=f(\xi)$. If for each n there is a component interval $\left(s_{n}, t_{n}\right) \subset G$ such that $s_{n}<\xi_{n}<t_{n}$ and $s_{n} \rightarrow \xi, t_{n} \rightarrow \xi$, then since f is convex in $\left[s_{n}, t_{n}\right], f\left(\xi_{n}\right) \leqslant \max \left\{f\left(s_{n}\right), f\left(t_{n}\right)\right\}$ and since f is upper semi-continuous on $J \cap P$ relative to P, $\lim _{n \rightarrow \infty} \sup \left(\xi_{n}\right) \leqslant f(\xi)$. Thus f is upper semi-continuous in J. So $J \cap P$ is void, which is a contradiction. Thus P is void. Therefore f is upper semi-continuous in $[a, b]$ and by Lemma 3.1 f is convex in $[a, b]$. By the Darboux property of f, it is also continuous in $[a, b]$.

Theorem 3.1. If $f_{(2)}$ exists in $[a, b]$ and $R^{4} f \geqslant 0$ everywhere in (a, b) then $f_{(2)}$ is continuous and convex in $[a, b]$.

Proof. We first suppose that $\underline{R D}^{4} f>0$ in ($\left.a, b\right)$. Let $[c, d] \subset(a, b)$ and
(1)

$$
F_{n}(x)=\frac{\Delta_{2}\left(f ; x, 2^{-n}\right)}{\left(2^{-n}\right)^{2}}, \quad x \in[c, d]
$$

For $x \in[c, d]$

$$
\begin{aligned}
0<\underline{R D}^{4} f(x) & =\liminf _{h \rightarrow 0} \frac{\Delta_{4}(f ; x, 2 h)}{16 h^{4}} \\
& =\liminf _{h \rightarrow 0} \frac{1}{h^{2}}\left[\frac{\Delta_{2}(f ; x, 4 h)}{(4 h)^{2}}-\frac{\Delta_{2}(f ; x, 2 h)}{(2 h)^{2}}\right] .
\end{aligned}
$$

Putting $h=2^{-n-2}$ we get

$$
\begin{aligned}
& 0<\underline{R D}^{4} f(x) \leqslant \lim _{n \rightarrow \infty} \inf \frac{1}{2^{-2 n-4}}\left[\frac{\Delta_{2}\left(f ; x, 2^{-n}\right)}{\left(2^{-n}\right)^{2}}-\frac{\Delta_{2}\left(f ; x, 2^{-(n+1)}\right)}{\left(2^{-(n+1)}\right)^{2}}\right] \\
& \text { i.e., } \quad 0<\liminf _{n \rightarrow \infty} \frac{-\frac{1}{2^{-2 n-4}}\left[F_{n}(x)-F_{n+1}(x)\right] .}{} .
\end{aligned}
$$

So there is a positive number $N(x)$ such that

$$
\begin{equation*}
F_{n}(x)>F_{n+1}(x) \text { for } n \geqslant N(x) \tag{2}
\end{equation*}
$$

and hence the sequence $\left\{F_{n}(x)\right\}$ is quasi-nonincreasing in $[c, d]$ (for definition see [10]). Since $f(2)$ exist, f is continuous in [abb] and hence F_{n} is continuous in [$\left.c, d\right]$ for each n. From (1)
13) $\lim _{n \rightarrow \infty} F_{n}(x)=f_{(2)}(x)$ for all $x \in[c, d]$.

Therefore, by a Lemma of $\operatorname{Saks}[10,53] f_{(2)} \in \bar{R}$ in [$\left.c, d\right]$.

From (2) and (3) we have
(4) $\quad F_{n}(x)>f_{(2)}(x)$ for $n \geqslant N(x)$.

Now integrating $\Delta_{2}\left(f_{(2)} ; x, t\right)$ twice, the first being in the CP-sense [1] and the second in the D^{*}-sane, we have

$$
\begin{aligned}
\int_{0}^{2^{-n}} \int_{0}^{h} \Delta_{2}(f(2) ; x, t) d t d h & =\int_{0}^{2^{-n}}[f(1)(x+h)-f(1)(x-h)-2 h f(2) \\
& =f(x)] d n \\
& f\left(x+2^{-n}\right)+f\left(x-2^{-n}\right)-2 f(x)-2^{2 n_{f}}(2)(x)
\end{aligned}
$$

So, by (1) and (4)

$$
\int_{0}^{2^{-n}} \int_{0}^{h} \Delta_{2}(f(2) ; x, t) d t d h>0 \text { for } n \geqslant N(x)
$$

Hence $\bar{D}^{2} f_{(2)}(x) \geqslant 0$ for $x \in[c, d]$. Since $f_{(2)} \in \mathscr{D}$ in $[c, d]|9|$. by Lemma $3.2 \hat{f}_{(2)}$ is continuous and convex in [cod]. Since $[c, d] \subset(a, b)$ is arbitrary and $f(2) \in \mathscr{D}$ in $[a, b], f(2)$ is continuous and convex in $[a, b]$. Thus the theorem is proved for the special case when $\underline{R D}^{4} f>0$ in (a, b).

To complete the proof consider

$$
g(n, x)=f(x)+\frac{1}{n} \cdot \frac{x^{4}}{4!}
$$

where n is a positive integer. Then $g_{(2)}(n, x)$ exists in $[a, b]$ and $\underline{R D}^{4} g=\underline{R D}^{4} f+\frac{1}{n}>0$ in (a, b). Hence, by the special case, $g_{(2)}(n, x)$ is continuous and convex in $[a, b]$ and since $f_{(2)}(x)$ is the uniform limit of $g_{(2)}(n, x)$ as $n \rightarrow \infty, f_{(2)}(\because)$
is also continuous and convex in $[a, b]$.

Lemma 3.3. For every set $E \subset(a, b)$ of measure zero and every $\varepsilon>0$ there is a function J such that $J^{\prime \prime \prime}$ exists, is nondecreasing, non-negative and continuous in $[a, b]$ and

$$
\operatorname{RD}^{4} J(x)=\infty \text { for } x \in E, J^{\prime \prime \prime}(a)=0 \text { and } J^{\prime \prime \prime}(b)<\varepsilon .
$$

Proof : Let $\varepsilon>0$ and E be arbitrarily fixed. For each n let i_{n} be an open set such that $E \subset G_{n}, G_{n+1} \subset G_{n}$ and $\left|G_{n}\right|<\frac{\varepsilon}{2^{n}}$. Also let

$$
\Psi_{n}(x)=\int_{a}^{x} \int_{a}^{\xi} \int_{a}^{\eta}\left|\hat{c}_{n} \cap[a, t]\right| d t d \eta d \xi
$$

Set

$$
J(x)=\sum_{n=1}^{\infty} \Psi_{n}(x)
$$

Since the function $\left|G_{n} \cap[a, t]\right|$ is continuous, non-decreasiric and non-negative, $\Psi_{n}^{\prime \prime \prime}$ exists and possesses these properties. The condition $\left|G_{n}\right|^{n}<\frac{\varepsilon}{2^{n}}$ implies that $\sum_{n=1}^{\infty} \Psi_{n}^{\prime \prime \prime}$ converges uniformly and hence $J^{\prime \prime \prime}$ exists and possesses those oronerties and $J^{\prime \prime \prime}(b)<\varepsilon$. Finally, if $x_{0} \in E$ and N is any positive integer, then for sufficiently stall $h>0,\left[x_{0}-2 h, x_{0}+2 h\right] \subset G_{N}$. Since $\left|G_{n} \cap[a, t]\right|$ is differentiable on G_{n} with $\frac{d}{d} \bar{t}\left|G_{n} \cap[a, t]\right|=1$, we have $\Psi_{r_{i}}^{I V}(x)=1$ for $x \in G_{n}$. Hence, for $1 \leqslant r \leqslant N$ and $0 \leqslant \alpha \leqslant 2 h$ we hove

$$
\begin{aligned}
\Psi_{r}\left(x_{0}+\alpha\right) & =\int_{a}^{x_{0}^{+\alpha}} \int_{a}^{\xi} \int_{a}^{\eta}\left|G_{r} \eta[a, t]\right| d t d \eta d \xi \\
& =A_{0}\left(x_{0}\right)+A_{1}\left(x_{0}\right) \alpha+A_{2}\left(x_{0}\right) \alpha^{2}+A_{3}\left(x_{0}\right) \alpha^{3}+\frac{\alpha^{4}}{4!}
\end{aligned}
$$

where $A_{i}\left(x_{0}\right), i=0,1,2,3$ does not depend on α. This is also true for $-2 h \leqslant \alpha \leqslant 0$. Hence

$$
\frac{\Delta_{4}\left(\Psi_{r} ; x_{0}, n\right)}{n^{4}}=1, r=1,2, \ldots, N .
$$

Since $\Psi_{n}^{\prime \prime \prime}$ is non-decreasing, Ψ_{n} is 4-convex [2] and therefore
$-\frac{\Delta_{4}\left(J ; x_{0}, h\right)}{h^{4}}=\sum_{n=1}^{\infty} \frac{\Delta_{4}\left(\Psi_{n} ; x_{0}, h\right)}{r^{4}} \geqslant \sum_{n=1}^{N} \frac{\Delta_{4}\left(\Psi_{n} ; x_{0}, h\right)}{h^{4}}=N$. Hence, $R D^{4} J\left(x_{0}\right)=\infty$.

Theorem 3.2. Suppose that
i) $f_{(2)}$ exists everywhere in $[a, b]$
ii) $R D^{4} \mathrm{f} \geqslant 0$ almost everywhere in (a, b)
iii) $R^{4}{ }^{4}>-\infty$ everywhere in (abb).

Then $f(2)$ is continuous and convex in $[a, b]$.

Proof : Let $E_{0}=\left\{x: x \in(a, b), \underline{R D}^{4} f(x)<0\right\}$. Then $\left|E_{0}\right|=0$. Let $\left\{\varepsilon_{n}\right\}$ be a positive null sequence and let $J(n, x)$ be the fundton of Lemma 3.3 corresponding to E_{0} and ε_{n}. Then the function
$f(x)+J(n, x)$ satisfies the hypotheses of Theorem 3.1. Hence
$f_{(2)}(x)+J_{(2)}(n, x)$ is continuous and convex in [abb]. Since
$J_{(2)}(n, x)<(b-a) \cdot \varepsilon_{n}$, we have

$$
f_{(2)}(x)=\lim _{n \rightarrow \infty}[f(2)(x)+J(2)(n, x)]
$$

Therefore $f_{(2)}$ is convex in $[a, b]$. The continuity of $f(2)$
follows from the Darboux property of $f(2)$.
Using Riemann derivate of order 3 we have

Theorem _3.2. Suppose that
i) f(1) exists everywhere in [at]
ii) $\underline{R D}^{3} \mathrm{f} \geqslant 0$ almost everywhere in (a, b)
iii) $\underline{R D}^{3} f>-\infty$ everywhere in (a, b).

Then $f(1)$ is continuous and convex in $[a, b]$.
This sharpens a result of [10], since $f(1)$ is the ordinary first derivative of f.
4. The K^{k}-integrals, $\mathrm{k}=2,3,4$.

Let f be defined and finite almost everywhere in [abb] and let $B \subset[a, b]$ be a measurable set of measure baa with $a, b \in R$. A continuous function Q is said to be a R^{k}-major function, $k=2,3,4$, of f in $[a, b]$ if
i) $Q_{(k-2)}$ Exists everywhere in $[a, b]$
ii) $Q_{(k-1)}$ exists on :
iii) $Q_{(k-1)}(a)=0$
iv) $R D^{k}{ }^{\mathrm{C}} \geqslant \mathrm{f}$ almost everywhere in (a, b)
v) $\underline{\hat{X}}^{k}{ }^{\mathrm{Q}}>-\infty$ everywhere in (a, b).

A function q is a minor function of f if $-q$ is a major functior of $-f$. If $k=4$ or 3 then it is clear from Thonems 3.2 nr $3 . j$ that $Q_{(k-2)}-q_{(k-2)}$ is continnous and surivex for syonry noir of major and minor functions Q and q. If $k=2$ (the condition
(i) is redundant hore) then clearly $Q-q$ is contiruous and convex (cf. [4, Theorem 1.1]). Hence for $k=2,3,4$, the function $Q-q$ is k-convex and since $Q_{(k-1)}-q_{(k-1)}$ exists on B, $Q_{(k-1)}-q_{(k-1)}$ is increasing onB[2].So, by (iii) we have $Q_{(k-1)}(b) \geqslant y_{(k-1)}(b)$. This being true for every pair Q and a

$$
\begin{equation*}
\inf _{\{Q\}} Q_{(k-1)}(b) \geqslant \sup _{\{q\}} q_{(k-1)}(b) \tag{5}
\end{equation*}
$$

If equality holds in (5) with eoral value hoinc finits then f is said to be R^{k}-integrable in $[a, b]$ with basis B and we write

$$
F(b)=\left(R^{k}, B\right) \int_{a}^{b} f(t) d t .
$$

The following is clear:

Iheorem 4.1. i) If f is R^{k}-integrable in $[a, b]$ with basis 3 and $x \in B$ then f is R^{k}-intearable ir $[a, x]$ with basis $: \cap\lceil a, x]$ and

$$
F(\because)=\left(A^{k}, B \cap[a, x]\right) \int_{\rightarrow}^{x} f(t) d t .
$$

(ii) The class of all R^{k}-integrable functions in [abb] with basis B is a linear space containing constant functions.
(iii) If f is R^{k}-integrable in $[a, b]$ with basis B and f and g are almost everywhere equal then g is also R^{k}-integrable and

$$
\left(R^{k}, B\right) \int_{a}^{b} f(t) d t=\left(R^{k}, B\right) \int_{a}^{b} g(t) d t
$$

Theorem 4.2. Let G be continuous in $[a, b]$ and let
i) $G_{(k-2)}$ exist everywhere in $[a, b]$
ii) $-\infty<\underline{R D}^{k} G \leqslant \overline{R D}^{k} G<\infty$ everywhere in (a, b).

Then $R D^{k_{G}}$ exists almost everywhere in (a, b) and there is a $B C(a, b)$ such that $G_{(k-1)}$ exists on B where $|B|=b-a$ and for $a_{1}, b_{1} \in B$ with $a_{1}<b_{1}, R D^{k} G$ is R^{k}-integrable with basis $B \cap\left[a_{1}, b_{1}\right]$ and

$$
\begin{equation*}
\left(R^{k}, B \cap\left[a_{1}, b_{1}\right]\right) \int_{a_{1}}^{b_{1}} R D^{k} G(t) d t=G_{(k-1)}\left(b_{1}\right)-G_{(k-1)}\left(a_{1}\right) \tag{6}
\end{equation*}
$$

Proof : Since

$$
-\infty<\underline{R D}^{k} G \leqslant \overline{R D}^{k} G<\infty \quad \text { everywhere in }(a, b)
$$

by [8, Theorem 1] $R D^{k} G$ and $G(k-1)$ exist almost everywhere in (a, b). Let $G_{(k-1)}$ exist on $B \subset(a, b)$ where $|B|=b-a$ and let $a_{1}, b_{1} \in B$. Then

$$
G(x)-G_{(k-1)}\left(a_{1}\right) \cdot \frac{x^{k-1}}{(k-1)!}
$$

 $R D^{k} G$ is. R^{k}-integrable in $\left[a_{1}, b_{1}\right]$ \%ith nasis $B \cap\left[a_{1}, b_{1}\right]$ and the relation (6) holds.
5. Formal multinlication of Riena:n sumemble togromerye series and annlications

The formal product of the sorios
(7) $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x)$
and $g(x)=\lambda \cos p x+\mu \sin p x$ where λ and μ are constants and p is a fixed positive integer, is the serics ohtained ry multiplying each term of (7) by g(x), reblacincy tie trioonorintrir. products by sums of sines and cosines and then rearraroina the terms in the form
(8) $\frac{1}{2} u_{0}+\sum_{n=1}^{\infty}\left(u_{n} \cos n x+v_{n} \sin n x\right)=\sum_{n=0}^{\infty} u_{n}(x)$
say, where

$$
u_{0}=\lambda a_{p}+\mu b_{p}
$$

(9)

$$
\begin{aligned}
& u_{n}=\frac{1}{2}\left[\lambda\left(a_{n-p}+a_{n+r}\right)-\mu\left(b_{n-p}-b_{n+p}\right)\right], n \geqslant 1 \\
& v_{n}=\frac{1}{2}\left[\lambda\left(b_{n-p}+b_{n+p}\right)+\mu\left(a_{n-p}-a_{n+p}\right)\right], \quad n \geqslant 1
\end{aligned}
$$

with the converition that $a_{-s}=a_{s}, b_{-s}=-b_{s}$.

Let the series conjugate to the series (8) he denoted by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(-v_{n} \cos n x+u_{n} \sin n x\right)=-\sum_{n=1}^{\infty} v_{n}(x) \text {. } \tag{10}
\end{equation*}
$$

The series conjugate to the series (7) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(-b_{n} \cos n x+a_{n} \sin n x\right)=-\sum_{n=1}^{\infty} B_{n}(x) . \tag{11}
\end{equation*}
$$

The formal product of (11) and $g(x)$ can he obtained as
above replacing a_{0} by C, a_{n} by $-b_{n}$ and b_{n} by a_{n} for $n \geqslant 1$ in (7) and noting that b_{0} is also zero. Let the formal product of (11) and $g(x)$ be

$$
\frac{1}{2} c_{0}+\sum_{n=1}^{\infty}\left(c_{n} \cos n x+d_{n} \sin n x\right)=\sum_{n=0}^{\infty} c_{n}(x)
$$

where

$$
\begin{aligned}
& c_{0}=-\lambda b_{p}+\mu a_{p} \\
& c_{n}=\frac{1}{2}\left[-\lambda\left(b_{n-p}+b_{n+p}\right)-\mu\left(a_{n-p}-a_{n+p}\right)\right], \quad n \geqslant 1 \\
& d_{n}=\frac{1}{2}\left[\lambda\left(a_{n-p}+a_{n+p}\right)-\mu\left(b_{n-p}-b_{n+p}\right)\right], \quad n \geqslant 1 .
\end{aligned}
$$

Here, of course, $b_{-s}=b_{s}, a_{0}=0, a_{-s}=-a_{s}$.
Therefore

$$
c_{n}=-v_{n} \quad f \cap r \quad n>p
$$

and

$$
d_{n}=u_{n} \text { for } n>p .
$$

Thus we get

Theorem 5.l. The series conjugite to the formal nroduct of a trigonometric series and $a(x)=\lambda \cos \alpha x+\mu \sin p x, p$ being a fixed positive integer and λ, μ being constants, is the formal product of the serios coninorte to the aiven trionorotric series and $g(x)$ plus a trigonomotric polynomial of oreer at mostr.

The following result is analogous to that in $[6 ; 13,1$, p. 370].

Iheorem 5.2. Suppose ${ }^{3} n=o\left(n^{\alpha}\right)=b_{n}, o<\alpha$. Then for each positive integer $m>\alpha+1$

$$
\sum_{n=0}^{\infty} U_{n}(x) \quad \text { and } \sum_{n=0}^{\infty} A_{n}(y) \cdot g(x)
$$

are uniformly equi-sunmahle (R, m) ; and

$$
\sum_{n=1}^{\infty} V_{n}(x) \quad \text { and } \quad \sum_{n=1}^{\infty} 3_{n}(x) \cdot g(x)
$$

are uniformly equi-summable (R, m) in the wider sense.

Proof : We suppose that m is even and $m=2 k$. The proof for odd m is similar. We have

$$
\begin{align*}
&\left(a_{n} \cos n x+b_{n} \sin n x\right)(\lambda \cos p x+\mu \sin p x) \tag{12}\\
&= \frac{1}{2}\left[\left(\lambda a_{n}-\mu b_{n}\right) \cos (n+p) x+\left(\lambda a_{n}+\mu b_{n}\right) \cos (n-p) x\right. \\
&\left.+\left(\lambda b_{n}+\mu a_{n}\right) \sin (n+p) x+\left(\lambda b_{n}-\mu a_{n}\right) \sin (n-p) x\right]
\end{align*}
$$

and hence from (7) and (12)
(13)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} A_{n}(x) \cdot g(x)=\frac{1}{2} a_{0}(\lambda \cos p x+\mu \sin n x) \\
& \quad+\frac{1}{2} \sum_{n=1}^{\infty}\left[\left(\lambda a_{n}-\mu b_{n}\right) \cos (n+p) x+\left(\lambda a_{n}+\mu b_{n}\right) \cos (n-!) x\right. \\
& \left.\quad+\left(\lambda: \partial_{n}+\mu a_{n}\right) \sin (n+p) x+\left(\lambda b_{n}-\mu a_{n}\right) \sin (n-p) x\right]
\end{aligned}
$$

Integrating (13) torm-by-term $2 k$ times and noting that the serins obtained at ter integration converges absolutely, the right hand side of (13) becomes

$$
\begin{align*}
& (-1)^{k} \cdot \frac{1}{2}\left[a_{0}\left(\lambda \frac{\cos }{p^{2 k}} \frac{x}{}+\mu \frac{\sin p x}{p^{2 k}}\right)+\sum_{n=1}^{\infty}\left(\lambda a_{n}-\mu b_{n}\right) \cdot \frac{\cos (n-n) x}{(n+p)^{2!}}\right. \tag{14}\\
& \quad+\sum_{\substack{n=1 \\
n \neq p}}^{\infty}\left(\lambda a_{n}+\mu b_{n}\right) \cdot \frac{\cos (n-p) x}{(n-p)^{2 k}}+\sum_{n=1}^{\infty}\left(\lambda b_{n}+\mu a_{n}\right) \cdot \frac{\sin (n+n) x}{(n+n)^{2!}} \\
& \left.\quad+\sum_{\substack{n=1 \\
n \neq p}}^{\infty}\left(\lambda b_{n}-\mu a_{n}\right) \cdot \frac{\sin (n-n) x}{(n-p)^{2 k}}\right]+\frac{1}{2}\left(\lambda a_{n}+i \cdot b_{p}\right) \cdot \frac{x^{2 k}}{(2 k)!}
\end{align*}
$$

$$
=\frac{1}{2}\left(\lambda a_{p}+\mu b_{p}\right) \cdot \frac{x^{2 k}}{(2 k)!}
$$

$$
+(-1)^{k} \cdot \frac{\vdots}{\vdots}\left[\sum_{n=0}^{\infty}\left(\lambda a_{n}-\mu b_{n}\right) \cdot \frac{\cos (n+p) x}{(n+p)^{2 k}}+\sum_{\substack{n=1 \\ n \neq p}}^{\infty}\left(\lambda a_{n}+\mu b_{n}\right) \cdot \frac{\cos (n-p ; x}{\left.(n-p)^{2}\right)}\right.
$$

$$
\left.+\sum_{n=0}^{\infty}\left(\lambda b_{n}+\mu \dot{a}_{n}\right) \cdot \frac{\sin (n+p) x}{(n+p)^{2 k}}+\sum_{\substack{n=1 \\ n \neq p}}^{\infty}\left(\lambda b_{n}-\mu a_{n}\right) \cdot \frac{\sin (n-p i x}{(n-p)^{2 k}}\right]
$$

Now

$$
\sum_{n=0}^{\infty}\left(\lambda b_{n}+\mu a_{n}\right) \cdot \frac{\sin (n+p) x}{(n+p)^{2 k}}=\sum_{n=p}^{\infty}\left(\lambda b_{n-p}+\mu_{n-p}\right) \cdot \frac{s i n}{n}
$$

and

$$
\begin{aligned}
& \quad \sum_{\substack{n=1 \\
n \neq p}}^{\infty}\left(\lambda b_{n}-\mu a_{n}\right) \cdot \frac{\sin (n-p) x}{(n-p)^{2 k}} \\
& =\sum_{n=1}^{p-1}\left(\lambda b_{n}-\mu a_{n}\right) \cdot \frac{\sin (n-p) x}{(n-p)^{2 k}}+\sum_{n=p+1}^{\infty}\left(\lambda b_{n}-\mu a_{n}\right) \cdot \frac{\sin (n-p) x}{(n-p)^{2 k}} \\
& =\sum_{n=1}^{p-1}\left(-\lambda b_{p-n}-\mu a_{p-n}\right) \cdot \frac{\sin n x}{n^{2 k}}+\sum_{n=1}^{\infty}\left(\lambda b_{n+p}-\mu a_{n+p}\right) \cdot \frac{\sin n x}{n^{2 k}} \cdot \\
& \text { Since, } a_{-s}=a_{s}, b_{-s}=-b_{s},(14) \text { reduces to } \\
& \quad \frac{1}{2}\left(\lambda a_{p}+\mu b_{p}\right) \cdot \frac{x^{2 k}}{(2 k)} \\
& \\
& \quad+(-1) \sum_{n=1}^{\infty} l \frac{1}{2}\left\{\lambda\left(a_{n-p}+a_{n+p}\right)-\mu\left(b_{n-p}-b_{n+p}\right)\right\} \cdot \frac{c=s n x}{n^{2 k}} \\
& \\
& \left.\quad+\frac{1}{2}\left\{\lambda\left(b_{n-p}+b_{r+n}\right)+\mu\left(a_{n-p}-a_{n+p}\right)\right\} \cdot \frac{\sin n x}{n^{2 k}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\cdot \lambda a_{n}-\mu b_{n}\right) \cdot \frac{\cos (n+p) y}{(n+p)^{2 k}}=\sum_{n=p}^{\infty}\left(\lambda a_{n-p}-\mu b_{n-p}\right) \cdot \frac{c o s}{} \\
& \sum_{\substack{n=1 \\
n \neq p}}^{\infty}\left(\lambda a_{n}+\mu b_{n}\right) \cdot \frac{\cos (n-p) x}{(n-p)^{2 k}}
\end{aligned}
$$

and this is by (9)

$$
=\frac{1}{2} u_{0} \cdot \frac{x^{2!}}{(2 k)!}+(-1)^{k} \sum_{n=1}^{\infty}\left(u_{r} \cos n x+v_{n} \sin n x\right) / n^{2 k} .
$$

So, integrating

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[U_{n}(x)-A_{n}(x) \cdot g(x)\right] \tag{15}
\end{equation*}
$$

term-by-term $2 k$-times we get zero for all x . Therefore (15) is uniformly summable ($R, 2 k$) to zero. Hence, the first part of the theorem is proved.

For the second part, proceeding as above with the series $\sum_{n=1}^{\infty} B_{n}(x)$ and noting Theorem 5.1 we can conclude that integrating

$$
\sum_{n=1}^{\alpha_{1}}\left[V_{n}(x)-B_{n}(x) \cdot g(x)\right]
$$

term-by-term $2 k$-times we get a trigonometric polynomial of order at most p and hence the result follows.

Corollary 5.1. Under the hypotheses of Theorem 3.2 if the uprer and lower (R, m) sums of $\sum_{n=0}^{\infty} A_{n}(x)$ at x_{0} are $\bar{f}\left(x_{0}\right)$ and $\pm\left(x_{0}\right)$ respectively then the unper and lower (R, m) sums of $\sum_{n=0}^{\infty} U_{n}(x)$ are $\bar{f}\left(x_{0}\right) \cdot g\left(x_{0}\right)$ and $f\left(x_{0}\right) \cdot g\left(x_{0}\right)$ resnectively when $g\left(x_{0}\right)>0$ and are $\underline{f}\left(x_{0}\right) \cdot g\left(x_{1}\right)$ and $\bar{f}\left(x_{0}\right) \cdot g\left(x_{0}\right)$ resnectively wien $g\left(x_{0}\right)<0$.

Proof : It is sufficient to note that the upper and lower (R, π) sums of $\sum_{n=0}^{\infty} A_{n}(x) \cdot g(x)$ at x_{0} are $\bar{f}\left(x_{0}\right) \cdot g\left(x_{0}\right)$ and $\underline{f}\left(x_{0}\right) \cdot g\left(x_{0}\right)$ respectively when $g\left(x_{0}\right)>0$ and are $f\left(x_{0}\right) \cdot g\left(x_{0}\right)$ and $\bar{f}\left(x_{0}\right) \cdot g\left(x_{0}\right)$ respectively when $g\left(x_{0}\right)<0$ and that if the unner and lower (Ω, m) suris of $\sum_{n=0}^{\infty} E_{n}(x)$ at x_{0} are $\bar{e}\left(x_{0}\right.$) and $\underline{e}\left(x_{0}\right)$ respective!y and if $\sum_{n=0}^{\infty} D_{n}(x)$ is sumprable (Ω, m) to u at x_{0} then the upper and lower (R, m) sums of $\sum_{n=0}^{\infty}\left[E_{n}(x)+D_{n}(x)\right]$ at x_{0} are $\bar{e}\left(x_{0}\right)$ and $e\left(x_{0}\right)$ respectively.

Lemma 5.1. If $a_{n}=O(n)=b_{n}$ and if the upper and lower ($R, 3$) or ($R, 4$) sums of (7) are finite at x_{0} then the series $\sum_{n=1}^{\infty} \hat{H}_{n}(x) / n^{2}$ converges.

This is due to Verblunsky [il, Lenma 7; also 12].

Theorem 5.3. Let $a_{n}=O(n)=b_{n}$ and let the scries (7) hove finite unner and lower (R, k) sums everywhere ($k=3$ or 4). (rien
(7) is almost everywhere sumatable (R, k) to a function say $f(x)$ and there is a periodic set C of period 2π and of full measure such that for $\alpha \in C$, the functions $f(x), f(x) . \cos n x$ and $f(x) . \sin n x$ are R^{k}-integrable in $[\alpha, \alpha+2 \pi]$ with basis $B=[\alpha, \alpha+2 \pi] \cap C$ and

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi}\left(R^{k}, B\right) \int_{\alpha}^{\alpha+2 \pi} f(x) \cdot \cos n x d x \quad n=0,1,2, \ldots \\
& b_{n}=\frac{1}{\pi}\left(R^{k}, B\right) \int_{\alpha}^{\alpha+2 \pi} f(x) \cdot \sin n x d x, n=1,2, \ldots
\end{aligned}
$$

Moreover, if $a_{n}=o\left(n^{\alpha}\right)=b_{n}, o<\alpha<1$, then the result is also true for $k=2$.

Proof : Let $k=4$. Let

$$
\phi(x)=\sum_{n=1}^{\infty} \frac{A_{n}(x)}{n^{4}} .
$$

Since (7) has finite under and lower ($\overline{\mathrm{h}}, 4$) sums, $\overline{\mathrm{RD}}^{4} \Phi$ and $\mathrm{RD}^{4} \phi$ are finite everywhere. So, by $\left[8\right.$, Theorem 1] $\mathrm{RD}^{4} \phi$ and $\phi(3)$ exist almost everywhere. Therefore (7) is summable (R, 4) almost everywhere and $\sum_{n=1}^{\infty} \frac{E_{n}(x)}{n}$ is summable ($R, 3$) almost everywhere. Sou

$$
f(x)=\frac{1}{2} a_{0}+R D^{4} \phi(x) \text {, where } K D^{4} \phi(x) \text { exists. }
$$

Let C_{0} be the set of points where $\phi_{(3)}$ exists, that is, where $\sum_{n=1}^{\infty} \frac{B_{n}(x)}{n}$ is summable $(R, 3)$. Then C_{o} is periodic of period 2π and of full measure.

Now consider the formal product $\sum_{n=0}^{\infty} U_{n}(x)$ of the series
and $g(x)=\lambda \cos p x+\mu \sin p x$, where p is a fixed positive integer,
λ, $⺊$ are constants, as defined in (8) and (9). Since $a_{n}=O(n)=b_{n}$
and (7) has finite voter and lower ($R, 4$) sums everywhere, by Corollary $5.1 \sum_{n=0}^{\infty} U_{n}(x)$ has finite upper and lower ($R, 4$) sums everywhere ard $u_{n}=O(n)=v_{n}$. Since $\sum_{n=0}^{\infty} A_{n}(x)$ is almost everywhere summable $(R, 4)$ to $f(x)$, by Corollary $5.1{\underset{V}{n}=0}_{\infty}^{U_{n}}(x)$ is
almost everywhore summable (R, 4) tc $f(x) . g(x)$. As above there is a periodic set say C_{p} of period 2π and of tull measure where $\sum_{n=1}^{\infty} \frac{V_{n}(x)}{n}$ is summable $(R, 3)$. Let $C=\bigcap_{p=0}^{\infty} C_{p}$. Then C is periodic of period 2π and of full measure.

By Lemma 5.1, the series $\sum_{n=1}^{\infty} \frac{A_{n}(x)}{n^{2}}$ is convorgent everywhere.
Let

$$
G(x)=-\sum_{n=1}^{\infty} \frac{A_{n}(x)}{n^{2}}, \quad H(x)=\sum_{n=1}^{\infty} \frac{E_{n}(x)}{n^{3}} .
$$

Since $a_{n}=O(n)=b_{n}$, by [13, I, p.332, Theorem 2.6j $D^{1} H=G$ and by [13, I, p.320, Theorem 2.8] H is smnoth. Hence the symmetric derivative $D^{1} H$ is the ordinary oerivative H^{\prime} and so $H^{\prime}=G$ evervinere. By the same argument $\phi^{\prime}=H$ everywhere. Hence $\phi^{\prime \prime}$ exists everywhere and equals G. Taking any point $\alpha \in C$ and writing $B=C \cap[\alpha, \alpha+2 \pi]$ the function ϕ is such thet $\phi^{\prime \prime}$ exists in $[\alpha, \alpha+2 \pi], \phi(3)$ exists on 3 and $\overline{R D}^{4} \phi, \underline{B D}^{4} \phi$ are finite in ($\alpha, \alpha+2 \pi$). Therefore by Theorem $4.2, \operatorname{RD}^{4} \phi$ is R^{4}-integrable in $[\alpha, \alpha+2 \pi]$ with basis B and

$$
\left(R^{4}, B\right) \int_{\alpha}^{\alpha+2 \pi} R D^{4} \phi(x) d x=\phi_{(3)}(\alpha+2 \pi)-\phi_{(3)}(\alpha)=0
$$

and hence by Theorem 4.1 (ii) - (iii)

$$
\left(R^{4}, B\right) \int_{\alpha}^{\alpha+2 \pi}\left[f(x)-\frac{1}{2} a_{0}\right] d x=0
$$

i.e.

$$
a_{0}=\frac{1}{\pi}\left(R^{4}, B\right) \int_{\alpha}^{\alpha+2 \pi} f(x) d x
$$

To determine a_{n} and b_{n}, $n \geqslant 1$, we employ tormal multinlication and consider the series $\sum_{n=0}^{\infty} U_{n}(x)$. Proceeding as above with the series $\sum_{n=0}^{\infty} U_{n}(x)$ we see that $f(x) . g(x)$ is R^{4}-inteorable in $[\alpha, \alpha+2 \pi]$ with the same basis B and

$$
u_{0}=\lambda a_{p}+\mu b_{p}=\frac{1}{\pi}\left(R^{4}, B\right) \int_{\alpha}^{\alpha+2 \pi} f(x) \cdot g(x) d x
$$

Putting $p=n, \lambda=1, \mu=0$

$$
a_{n}=\frac{1}{\pi}\left(R^{4}, B\right) \int_{\alpha}^{\alpha+2 \pi} f(x) \cdot \cos n x d x
$$

and putting $p=n, \lambda=0, \mu=1$

$$
b_{n}=\frac{1}{\pi}\left(R^{4}, B\right) \int_{\alpha}^{\alpha+2 \pi} f(x) \cdot \sin n x d x
$$

For $k=3$, the proof is similar.
If $k=2$, the function

$$
\Psi(x)=\sum_{n=1}^{\infty} \frac{A_{n}(x)}{n^{2}}
$$

is continuous everywhere and riroceeding as abo:e the proof can be completed

References

1. J.A.Bergin - A new characterisation of Cesaro-Perron integrals using Peano derivatives, Trans.Amer.Math.Soc. 228 (1977),287-305.
2. P.S.Bullen - A criterion for n-convexity, Pacific J.Math. 36 (1971), 81-98.
3. P.S.Bullen and S.N.Mukhopadhyay - The integrability of Riemann summable trigonometric series, Canad.Math.Bull. (To appear).
4. J.C.Burkill - Integrals and trigonometric series, Proc.London Math.Soc. (3) 1 (1951), 46-57.
5. R.D.James - A generalised integral-II, Canad.J.Math. 2 (1950), 297-306.
6. - Summable trigonometric series, Pacific J.Math. 6 (1956), 99-110.
7. C.M.Lee - On integrals and summable trigonometric series, Canad.Math. Bull. 24(4) (1981), 433-440.
8. J.Marcinkiewicz and Zygmund - On differentiability of functions and summability of trigonometric series, Fund.Math. 26(1936),1-43.
9. H.N.Oliver - The exact Peano derivative, Trans.Amer.Math.Soc. 76 (1954), 444-456.
10. S.Saks - On the generalised derivatives, J.London Math.Soc. 7 (1932), 247-251.
11. S.Verblunsky - The generalised third derivative and its application to the theory of trigonometric series, Proc.London Math.Soc. (2) 31 (1930), 387-406.
12. S.Verblunsky - The generalised fourth derivative, J.London Math.Soc. 6 (1931), 82-84.
13. A.Zygmund - Trigonometric series, Cambridge, 1968.

Recoived 2 Normomer, 1989

