On non-differentiable measure-preserving functions

1. Introduction

Let M be a collection of all continuous probability measures on the interval [0,1] with support equal to the interval [0,1]. For $\mu \in M$ let $C(\mu)$ consist of all continuous μ-preserving functions from $[0,1]$ onto [0,1],i.e. $C(\mu)=$ $\left\{f:\left[0,1^{〔}\right] \rightarrow[0,1], f\right.$ is continuous, $\left.\forall A \subseteq[0,1]: \mu(A)=\mu\left(f^{-1}(A)\right)\right\}$. In what follows, $C(\mu)$ will be endowed by the uniform metric ρ.

The purpose of this note is to prove the existence of non-differentiable functions in the complete metric space $C(\mu)$. Our main result is Theorem 4 , which states a general result analogous to one of V.Jarnik [1]. A construction of Besicovitch function preserving the Lebesgue measure λ is also presented.

2. Residual sets in C(μ)

In this section we study residual sets in $C(\mu)$. We start with some auxiliary results.

Proposition A. C(μ), endowed by the uniform metric ρ, is a complete metric space.

Proposition B.

$$
\mathrm{f} \in \mathrm{C}(\mu) \text { iff } \forall\left(\frac{r}{2^{m}}, \frac{s}{2^{n}}\right): \mu\left(\left(\frac{r}{2^{m}}, \frac{s}{2^{n}}\right)\right)=\mu\left(f^{-1}\left(\left(\frac{r}{2^{m}}, \frac{s}{2^{n}}\right)\right)\right.
$$

[^0]Proof. Fi× $f \in C(\lambda)$, $\varepsilon>0$. We shall construct a piecewise linear runction $d^{*} \in C(\lambda)$ with local extremes at rational points only, and such that $\rho\left(d^{*}, f\right)<\varepsilon$.
First of all, we shall construct a piecewise linear function d (maybe dec(λ) with local extremes at rational points only, with properties :
(1) $\rho(r, d)<\frac{\varepsilon}{2}$
(2) for the homeomorphism $\left.h(x)=\lambda\left(d^{-1}(0, x)\right)\right)$ defined on $[0,1]$ it holds $\rho(h, i d)<\frac{\varepsilon}{2}$
Let n be a positive integer such that $\frac{1}{2^{n}}<\frac{\varepsilon}{2}$. For $k \in\left\{0,1 \ldots 2^{n}-1\right\}$ it holds $f^{-1}\left(\frac{k}{2^{n}} \cdot \frac{k+1}{2^{n}}=\operatorname{l}_{m} \int\left(a_{m}^{k} \cdot b_{m}^{k}\right)\right.$ and $\sum_{m}\left(b_{m}^{k}-a_{m}^{k}\right)=\frac{1}{2^{n}}$. There exists a positive integer N_{k}^{m} such that
(3)

$$
\sum_{m=1}^{N}\left(b_{m}^{k}-a_{m}^{k}\right)>\frac{1}{2^{n}}-\frac{\varepsilon}{2^{n+1}}
$$

Define a function \hat{d} for $x \in \bigcup_{m=1}^{N} \int_{m}^{N}\left[a_{m}^{k}, b_{m}^{k}\right]$ as follows: if $f\left(a_{m}^{k}\right)-f\left(b_{m}^{k}\right)=0$, then

$$
\begin{array}{ll}
\hat{d}(x)=f\left(a_{m}^{k}\right)+\frac{f\left(x_{m}^{k}\right)-f\left(a_{m}^{k}\right)}{x_{m}^{k}-a_{m}^{k}}\left(x-a_{m}^{k}\right), & x \in\left[a_{m}^{k}, x_{m}^{k}\right] \\
\hat{d}(x)=f\left(b_{m}^{k}\right)+\frac{f\left(x_{m}^{k}\right)-f\left(b_{m}^{k}\right)}{x_{m}^{k}-b_{m}^{k}}\left(x-b_{m}^{k}\right), & x \in\left[x_{m}^{k}, b_{m}^{k}\right]
\end{array}
$$

where x_{m}^{k} is the point in which f attains its extreme on the interval $\left(a_{m}^{k} \cdot b_{m}^{k}\right)\left(\right.$ since $f \in C(\lambda)$ and $f\left(a_{m}^{k}\right)-f\left(b_{m}^{k}\right)=0$, there has to exist at least one such x_{m}^{k}) ;
if $f\left(a_{m}^{k}\right)-f\left(b_{m}^{k}\right)=\frac{1}{2^{n}}$, then

$$
\hat{d}(x)=f\left(a_{m}^{k}\right)+\frac{f\left(b_{m}^{k}\right)-f\left(a_{m}^{k}\right)}{b_{m}^{k}-a_{m}^{k}}\left(x-a_{m}^{k}\right) \quad x \in\left[a_{m}^{k} \cdot b_{m}^{k}\right]
$$

For the set $M=L_{k=0}^{2_{0}^{n}} \int_{m=1}^{N} \int_{m}^{N}\left[a_{m}^{k}, b_{m}^{k}\right]$ it holds $\rho(r, \hat{d})<\frac{\varepsilon}{2}$. There exists a function d defined on $[0,1]$ such that $d_{\mid m}=\hat{d}$, whereby d is continuous piecewise linear function with properties (1), (2)
(to obtain (2) use (3)). We may suppose that d has local extremes at rational points only $($ use a small perturbation). Obviously, using (2) we have $\rho(h \circ d, f)<\rho(h \circ d, d)+\rho(d, r)<\varepsilon$. The function hod is piecewise linear with local extremes at rational points, and since $\lambda\left(d^{-1}\left(h^{-1}(A)\right)=\lambda\left(h\left(h^{-1}(A)\right)\right)=\lambda(A)\right.$ we have h•d $\in C(\lambda)$. Thus, we put $d^{*}=h \cdot d$ and our construction of the function d^{*} is finished.

Lemma 2. The set of plecewise monotone functions is dense in $C(\mu)$.
Proof. Let $\left\{d_{j}\right\}_{j=1}^{\infty}$ be a sequence of piecewise linear functions dense in $C(\lambda)$ (see Lemma 1). It is well-known that $g \in C(\mu)$ iff $g=h^{-1}$ ofoh for some $f \in C(\lambda)$ and homeomorphism h defined by relation $\dot{h}(x)=\mu(0, x]) \subset$ g.f are topologically conjugated). Hence the sequence $\left\{h^{-1} \circ d_{j} \circ h\right\}_{j=1}^{\infty}$ is dense in $C(\mu)$.

For $\alpha \in(0,1)$, a positive integer n and $\beta \in\left(0, \frac{\alpha(1-\alpha)}{2^{n}}\right.$ define the function $k_{n, \alpha, \beta}:[0,1] \rightarrow[0,1]$ as follows:
$k_{n, \alpha, \beta}(x)=\left\{\begin{array}{l}1 ; x=1, x=\frac{2 k+1}{2^{n}}(1-\alpha), k \in\left(0,1, \ldots, 2^{n=1} 1\right) \\ 0 ; x=\frac{2 k}{2^{n}}(1-\alpha), k \in\left\{0,1, \ldots, 2^{n-1}\right) \\ 1-\alpha ; x=1-\alpha+2^{n} \beta, x=\frac{2 k+1}{2^{n}}(1-\alpha) \pm \beta, k \in\left(0,1, \ldots, 2^{n-1}-1\right) \\ \text { continuously,linearly;otherwise(with a constant }\end{array}\right.$ slope on the connected component)

Obviously $k_{n, \alpha, \beta} \in C(\lambda)$. For a positive γ define on the interval $[0, \gamma]$ the function $k_{n, \alpha, \beta, \gamma}$ by $k_{n, \alpha, \beta, \gamma}(x)=\gamma k_{n, \alpha, \beta}\left(\frac{x}{\gamma}\right)$.

Remark. In the following lemma, the function h_{μ} is defined on $[a, b]$ by $h_{\mu}(x)=\mu([a, x])$.

Lemma 3. Let $\mu, \nu \in M,[a, b] \times[c, d] \subseteq[0,1]^{2}, f:[a, b] \rightarrow[c, d]$ is a strictly monotone continuous function such that $f([a, b])=$ $[c, d]$. For $\gamma=h_{\mu}(b)-h_{\mu}(a)$ denote $g_{n}=g_{n, \alpha, \beta}=f \circ h_{\mu}^{-1} \circ k_{n, \alpha, \beta, \gamma} \circ h_{\mu}$. $M_{n, k}=\left\{x \in[a, b] ; \exists \delta \in\left(0, \frac{1}{k}\right): \frac{g_{n}(x+\delta)-g_{n}(x)}{\delta}>k\right\}$. Further, suppose
that A and $f^{-1}(A)$ are μ-measurable. Then
(4) for every $n, \alpha, \beta: \mu\left(f^{-1}(A)\right)=\mu\left(g_{n}^{-1}(A)\right)$
(5) for every positive ε and positive integer k there are n, α, β such that

$$
\nu\left(M_{n, k}\right)>\nu([a, b])-\varepsilon
$$

Proof. Suppose that f is on [a,b] an increasing function (for a decreasing function the proof is similar). Clearly, the property (4) follows from the fact that the function $k_{n, a, \beta, \gamma}$ preserves the Lebesgue measure on [0, $\left.\gamma\right]$. We shall prove the property (5).
There exists $\omega \in[c, d]$ such that
(6)

$$
\nu\left(\left[f^{-1}(\omega), b\right]\right)<\varepsilon
$$

Put $\alpha=1-\frac{h_{\mu}\left(f^{-1}(\omega)\right)}{\gamma}$ and consider $g_{n, \alpha, \beta}$ for suitable n, β. If $K_{n}=\max \left\{x \in[a, b) ; g_{n}(x)=d\right\}$ then obviously $K_{n}<b$. It is easy to verify that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} K_{n}=f^{-1}(\omega), \quad\left(\beta \in\left(0, \frac{a(1-\alpha)}{2^{n}}\right)\right) \tag{7}
\end{equation*}
$$

For the preimage $g_{n}^{-i}([c, \omega])$ we have
(8)

$$
\left.\left(g_{n}^{-1}([c, \omega]) \cap\left[a, k_{n}\right]\right) \supseteq\left(\left[a, k_{n}\right] \backslash \sum_{j=1}^{2^{n}-1}\right]_{j}\right)
$$

where J_{j} are intervals and $\left.\bigcup_{j=1}^{2-1} J_{j}^{n}=g_{n}^{-1}(c \omega, d]\right) \cap\left[a, f^{-1}(\omega)\right]$. For a fixed n, the properties of ν imply
(3)

$$
\lim _{\beta \rightarrow 0} \nu\left(\sum_{j=1}^{2-1} J_{j}\right)=0
$$

From (6). (7), (9) we conclude that for sufficiently large n and sufficiently small β.
(10)

$$
\nu\left(\left[a, K_{n}\right] \backslash \sum_{j=1}^{2-1} J_{j}^{n}\right)>\nu([a, b])-\varepsilon
$$

Thus. (8) and (10) imply that to prove (5) it is surficient to show that

$$
M_{n, k} \supset\left(g_{n}^{-1}([c, \omega]) \cap\left[a, K_{n}\right]\right)
$$

for any k and suitable $n(k)$. Indeed, for every k_{1} there exists $n_{1}\left(k_{1}\right)$ such that for $x \in\left(g_{n_{1}}^{-1}, \alpha, \beta([c, \omega]) n\left[a, k_{n_{1}}\right]\right)$ we can find $y \in\left(x, x+\frac{1}{k_{1}}\right)$ for which $g_{n_{1}}(y)=d$. Then
(11)

$$
\frac{g_{n_{1}}(y)-g_{n_{1}}(x)}{y-x}>k_{1}(d-\omega)
$$

Now, if k_{1} satisfies the conditions
(12)

$$
k_{1}>k, \quad k_{1}(d-\omega)>k
$$

then from (11) and (12) we obtain

$$
\left.M_{n_{1}}, k>g_{n_{1}}, \alpha, \beta([c, \omega]) n\left[a, k_{n_{1}}\right]\right)
$$

The proof of (5) is complete.

We recall that by a knot point of function f we mean a point x where $D^{+} f(x)=D^{-} f(x)=+\infty$ and $D_{+} f(x)=D_{-} f(x)=-\infty$. In addition, $C(\mu)$ with the uniform metric ρ is by Proposition A a complete metric space.

Theorem 4. C(μ)-typical function has a knot point at v-almost every point.
Proof. Denote $M^{+}(g)=\left\{x \in[0,1] ; D^{+} g(x)=+\infty\right\}, G^{+}=\left\{g \in C(\mu) ; \nu\left(M^{+}(g)\right)=1\right\}$ $\left(M_{+}, G_{+}, M^{-}, G^{-}, M_{-}, G_{-}\right.$analogously). If we put for positive integers p, q

$$
E_{p, q}=\left\{f \in C(\mu) ; \nu\left(\left\{x \in[0,1] ; \forall \delta \in\left(0, \frac{1}{p}\right): \frac{f(x+\delta)-f(x)}{\delta} \leq p\right\} \geq \frac{1}{q}\right\}\right.
$$

then $G^{+}=\bigcap_{p} \bigcap_{q}\left(C(\mu) \backslash E_{p, q}\right)$. We shall show that G^{+}is residual in $C(\mu)$.
I. Denote $M_{f}=\left\{x \in[0,1] ; \forall \delta \in\left(0, \frac{1}{p}\right): \frac{f(x+\delta)-f(x)}{\delta} \leq p\right\}$. Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a sequence of functions from $E_{p, q}, f_{k} \rightarrow f$ uniformly. It is easy to verify

$$
\prod_{l \geq 0} \varliminf_{k \geq l} \int M_{f} \leq M_{f}, \quad \frac{1}{q} \leq \nu\left(\prod_{l \geq 0} \prod_{k \geq l}^{\int_{f} \int M_{f}}\right) \leq \nu\left(M_{f}\right)
$$

,i.e. $r \in E_{p, q}$ and $E_{p, q}$ is closed.
II. Fix $f \in C(\mu)$ and $\varepsilon>0$. By Lemma 2 there exists in C(μ) a
piecewise monotone function g for which
(13) $\quad \rho(f, g)<\frac{\varepsilon}{2}$

For a positive integer r, consider the partition $0=x_{0}<\ldots<x_{r}=1$ of $[0,1]$ such that for every $j \in\{1,2, \ldots, r\}$ the following conditions are satisfied :
(14) g is on $I_{j}=\left[x_{j-1}, x_{j}\right]$ monotone
(15) $\operatorname{|g}\left(x_{j-1}\right)-g\left(x_{j}\right) \left\lvert\,<\frac{\varepsilon}{2}\right.$

Since $g_{\|} \|_{j}$ satisfies the conditions of Lemma 3 we can replace on I_{j} the function g by $g_{n(j)}=g_{n(j), \alpha, \beta}$ (according to Lemma 3) such that
(16) $\nu\left(\left\{x \in I_{j} ; \exists \delta \in\left(0, \frac{1}{p}\right): \frac{g_{n(j)}(x+\delta)-g_{n(j)}(x)}{\delta}>p\right\}>\nu\left(I_{j}\right)-\frac{1}{r q}\right.$

Define on [0,1] a runction \hat{g} by $\hat{g}_{\mid I}=_{j} g_{n(j), \alpha(j), \beta(j)}$. Then from the properties (13), (14) and (15) we conclude $\rho(f, \hat{g})<\varepsilon$, and by (4) we obtain $\hat{g} \in C(\mu)$. Finally, the property (16) implies

$$
\nu\left(\left\{x \in[0,1] ; \exists \delta \in\left(0, \frac{1}{p}\right): \frac{g(x+\delta)-g(x)}{\delta}>p\right\}>1-\frac{1}{q} .\right.
$$

i.e. $\hat{g} \in\left(C(\mu) \backslash E_{p, q}\right)$ and $E_{p, q}$ is nowhere dense.

Similarly we can show that the sets G_{+}, G^{-}, G_{-}are residual and therefore the set

$$
\begin{equation*}
G=G^{+} \cap G_{+} \cap G^{-} \cap G_{-}=\left\{g \in C(\mu) ; \nu\left(M^{+} \cap M_{+} \cap M^{-} \cap M_{-}\right)=1\right\} \tag{}
\end{equation*}
$$

is residual as well.

Corollary. $C(\mu)$-typical function maps at least one v-null set onto $[0,1]$.
Proof. It is easy to see that any level set of any continuous function contains a point which is not a knot point of the function f.

Remark. By means of Theorem 4 it is possible to show that there exists an absolutely continuous measure μ such that
$C(\mu)$ contains a runction with a level set of positive Lebesgue measure.

Theorem 5. All level sets of $C(\mu)$-typical function, are ν-null sets.
Proof. Denote $F_{n}=\left\{f \in C(\mu) ; \exists y: \nu\left(f^{-1}(y)\right) \geq \frac{1}{n}\right\}$. It is known that F_{n} is a closed set (see [2], p.325, 1.1.2.). From Lemma 2 it follows that F_{n} is nowhere dense for every positive integer n hence the set $F=\bigcup_{n=1}^{\infty} F_{n}=\left\{f \in C(\mu) ; \exists y: \nu\left(f^{-1}(y)\right)>0\right\}$ is a set of the first category in $C(\mu)$.

3. Besicovitch functions in $C(\lambda)$

We recall that by a Besicovitch function we mean a function which has nowhere unilateral derivative crinite or infinite). In 1932 S. Saks[3] proved that the collection of all Besicovitch functions is of the first category in the space \mathcal{C} of all continuous functions on [0,1]. A similar result holds in $C(\mu)$ (using Theorem 4). We shall show that there exist Besicovitch functions in $C(\lambda)$. The following construction of Besicovitch function from $C(\lambda)$ is a slight modification of that in [4].

Construction

Let $k \geq 4$. Let us construct in $\left[0, \frac{1}{2}\right]$ a discontinum

$$
D=\left[0, \frac{1}{2}\right] \backslash L \text {, where } L=L_{m=1}^{\infty} \sum_{p=1}^{2^{m}-1} r_{m, p} \text {. }
$$

and the open intervals $r_{m, p}=\left(a_{m, p}, b_{m, p}\right)$ are constructed as follows :
(a) $d_{1,1}=\left[0, \frac{1}{2}\right], \quad r_{1,1} \subseteq d_{1,1}, \lambda\left(r_{1,1}\right)=\frac{1}{2 k}$,
$b_{1,1}$ is the center of $d_{1,1}$
(β) if $d_{n, 1} \ldots d_{n, 2^{n-1}}$ are (from left to right) the intervals of the set $\left[0, \frac{1}{2}\right] \backslash \operatorname{li}_{q=1}^{n} \sum_{p=1}^{2-1} r_{q, p}$, then $r_{n, p} \subseteq d_{n, p}, b_{n, p}$ is the center of $d_{n, p}$ and $\lambda\left(r_{n, p}\right)=\frac{1}{2 k^{n}}$

It is easy to verify that

$$
\lambda(L)=\frac{1}{2(k-2)} \quad, \quad \lambda(D)=\frac{k-3}{2(k-2)} .
$$

Remark. For $k<4$ it is impossible to use this method for a construction of discontinuum D.

Define a runction $\phi:\left[0, \frac{1}{2}\right] \rightarrow[0,1]$ by

$$
\phi(x)=2\left(\frac{k-2}{k-3}\right) \lambda(\operatorname{Dn}(0, x))
$$

Obviously $\phi(0)=0, \quad \phi\left(\frac{1}{2}\right)=1, \quad \phi$ is continuous, nondecreasing function, constant on every interval $r_{m, p}, \phi\left(r_{m, p}\right)=\left\{\frac{2 p-1}{2^{m}}\right\}$. Define a function $p:[0,1] \rightarrow[0,1]$ by

$$
\begin{aligned}
& p(x)=\phi(x), \quad x \in\left[0, \frac{1}{2}\right] \\
& p(x)=\phi(1-x), \quad x \in\left[\frac{1}{2}, 1\right]
\end{aligned}
$$

The function P and the interval [0,1] form the well-known step triangle [4].

The above described procedure will be called a construction of a step triangle with base [0,1], height 1 and parameter k.

The set $\left\{(x, p(x)) ; x \in\left[0, \frac{1}{2}\right]\right\}$ is the left side of triangle. analogously the set $\left\{(x, p(x)) ; x \in\left[\frac{1}{2}, 1\right]\right\}$ is the right side of triangle. Further, put $u_{y}=\{(x, y) ; x \in[0,1]\}$ and let $g(f)$ be a graph of a function f. Now, we can construct a function f as follows :
(co) construct a step triangle with the base [0,1], height 1 and parameter k; the sides of the step triangle define a function f_{0}
$\left(c_{n}\right)$ construct step triangles whose bases are intervals of the set $\left.\sum_{p=1}^{2^{n-1}} \frac{u_{2 p-1}}{2^{n}} \cap g\left(r_{n-1}\right)\right)$, height $\frac{1}{2^{n}}$ and parameter k

Cconstructed triangles are placed inwards the bigger triangle on whose side have their bases); the union of sides of all so far constructed triangles define a function f_{n}.

Finally, put $f=\lim _{n \rightarrow \infty} f_{n}$ (obviously $\rho\left(f_{n}, r_{n-1}\right)=\frac{1}{2^{n}}$.

The function f is Besicovitch function. We shall not prove this fact; it is possible to use a modification of proof presented in [4]. We shall prove

Theorem 6. $\mathrm{f} \in \mathrm{C}(\lambda)$.
Proof. By Proposition B it is sufficient to show that for any positive integer n and $k \in\left\{0,1, \ldots 2^{n}-1\right\}$ we have
(17)

$$
\lambda\left(r^{-1}\left(\left(\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right)\right)=\frac{1}{2^{n}}
$$

From the construction of the function f it is clear that for n, k mentioned above and positive integer s we have

$$
f_{n+8}^{-1}\left(\left(\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)=f_{n}^{-1}\left(\left(\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right.\right.
$$

i.e. it surfices to verify (17) only for a function f_{n}. We shall prove it by induction. It is easy to see that $\lambda\left(f_{0}^{-1}((0,1))\right)=1$. Suppose that for every $k \in\left(0,1, \ldots, 2^{n}-1\right)$ the equality $\lambda\left(f_{n-1}^{-1}\left(c \frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right)\right)=\frac{1}{2^{n-1}}$ holds and $f i \times k_{0} \in\left(0 \ldots 2^{n-1}\right)$ Observe that $\frac{u_{2 k} 0^{+1}}{2^{n}} \cap g\left(r_{n-1}\right)=\bigcup_{k=1}^{m} \int_{1}\left[u_{k}, v_{k}\right] \times\left\{\frac{2 k_{0}+1}{2^{n}}\right\}$, where m is a suitable positive integer. Let $k \in\{1, \ldots, m)$ be fixed. There exist $x \in f_{n-1}^{-1}\left(\frac{2 k_{0}}{2^{n}}\right)$ and $y \in f_{n-1}^{-1}\left(\frac{2 k_{0}+2}{2^{n}}\right)$ such that

$$
\begin{gathered}
x_{k}=\min (x, y)<u_{k}<v_{k}<\max (x, y)=y_{k} \\
\left.\theta=\left(x_{k}, u_{k}\right) \operatorname{n(f_{n-1}^{-1}}\left(\frac{2 k 0}{2^{n}}\right) \cup r_{n-1}^{-1}\left(\frac{2 k_{0}^{+2}}{2^{n}}\right)\right) \\
\theta=\left(v_{k}, y_{k}\right) n\left(f_{n-1}^{-1}\left(\frac{2 k}{2^{n}}\right) \cup r_{n-1}^{-1}\left(\frac{2 k_{0}^{+2}}{2^{n}}\right)\right.
\end{gathered}
$$

For $x_{k}, u_{k}, v_{k}, y_{k}$ we shall distinguish four cases :
(i)

$$
\left(x_{k}+y_{k}\right) \frac{1}{2}=u_{k}, f_{n-1}\left(x_{k}\right)<f_{n-1}\left(y_{k}\right)
$$

(ii)

$$
\left(x_{k}+y_{k}\right) \frac{1}{2}=u_{k}, f_{n-1}\left(x_{k}\right)>f_{n-1}\left(y_{k}\right)
$$

(iii)

$$
\left(x_{k}+y_{k}\right) \frac{1}{2}=v_{k}, f_{n-1}\left(x_{k}\right)<f_{n-1}\left(y_{k}\right)
$$

(iv)

$$
\left(x_{k}+y_{k}\right) \frac{1}{2}=v_{k}, f_{n-1}\left(x_{k}\right)>f_{n-1}\left(y_{k}\right)
$$

Consider for example (iii)(the others are similar). Obviously a triangle constructed on the base $\left\{\left(w, f_{n-1}(w)\right), w \in\left[u_{k}, v_{k}\right]\right\}$ with height $\frac{1}{2^{n}}$ tends down. Then

$$
\begin{aligned}
& f_{n}^{-1}\left(\left(\frac{2 k_{0}}{2^{n}}, \frac{2 k_{0}^{+1}}{2^{n}}\right)\right) n\left[x_{k} \cdot y_{k}\right]=\left[x_{k} \cdot v_{k}\right] \quad \text { i.e.. } \\
& \lambda\left(f_{n}^{-1}\left(\left(\frac{2 k_{0}}{2^{n}}, \frac{2 k_{0}^{+1}}{2^{n}}\right)\right) n\left(x_{k} \cdot y_{k}\right]\right)=v_{k}-x_{k}=\frac{1}{2}\left(y_{k}-x_{k}\right)
\end{aligned}
$$

and since $\left(\quad\left(x_{k_{1}}, y_{k_{1}}\right) \cap\left(x_{k_{2}}, y_{k_{2}}\right)=0\right)$

$$
f_{n}^{-1}\left(\left(\frac{2 k_{0}}{2^{n}}, \frac{2 k_{0}^{+1}}{2^{n}}\right)\right)=\left(\sum_{k=1}^{m} J\left(f_{n}^{-1}\left(\left(\frac{2 k_{0}}{2^{n}}, \frac{2 k_{0}^{+1}}{2^{n}}\right)\right) n\left(x_{k} \cdot y_{k}\right]\right)\right.
$$

we have

$$
\lambda\left(f_{n}^{-1}\left(\left(\frac{2 k_{0}}{2^{n}}, \frac{2 k_{0}^{+1}}{2^{n}}\right)\right)\right)=\sum_{k=1}^{m} \frac{1}{2}\left(y_{k}-x_{k}\right)
$$

We can easily verify that

$$
f_{n-1}^{-1}\left(\left(\frac{2 k_{0}}{2^{n}} \cdot \frac{2 k_{0}+2}{2^{n}}\right)=\left(\sum_{k=1}^{m} J\left(x_{k} \cdot y_{k}\right)\right.\right.
$$

and, by induction hypothesis,

$$
\sum_{k \equiv 1}^{m} \frac{1}{2}\left(y_{k}-x_{k}\right)=\frac{1}{2^{n}}
$$

The proof of Theorem 6 is complete.
1.V.Jarnik: Über die Differenzierbarkeit stetiger Funktionen, Fund. Math. 21(1933), 48-58.
2. A. M. Bruckner and G. Petruska: Some typical results on bounded Baire 1 function, Acta Math. Hung. 43(3-4)(1984), 325-333.
3. S. Saks: On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19(1932), 211-219.
4. E. D. Pepper: On continuous functions without a derivative, Fund. Math. 12(1928), 244-253.

Raceived Septomber 26, 1989

[^0]: The following lemmas will be useful when proving the main results.

 Lemma 1. The set of piecewise linear functions is dense in $C(\lambda)$.

