
 R.M.Shortt, Department of Mathematics, Weslyan University, Middletown,
 CT, 06457

 A Theory of Integration for Cardinal Algebras

 CONTENTS

 §0. Introduction

 §1. Preliminary results

 §2. Integration

 §3. Signed measures

 §4. Radon-Nikodym theorems

 §5. Applications: integral representations for A**

 79



 §0. Introduction

 The origin of the theory of cardinal algebras lies in work of Tarski,

 whose wonderful treatise [15] is the subject's central reference. The

 original premise seems to have been that addition of cardinal numbers might

 profitably be studied from an axiomatic point of view making no a priori

 use of the notion of "set". (This fits well with Tarski' s suspicion that

 the Zermelo-Fraenkel set theory was too limited in scope.) At the same

 time, Tarski realised that a number of applications of the idea were

 possible in measure theory, descriptive set theory, and for the study of

 various ordered algebraic structures (lattices, Boolean algebras and

 lattice-ordered semi-groups). Some of these applications may be found in

 [15], but we mention [2], [1], [5], [6], [9], [10], [11] as a sampler.

 Despite the fact that Tarski did apply cardinal algebras to the

 theory of countably additive measures and even alluded to the possibility

 of defining finitely additive measures on a cardinal algebra [15: section

 11], he never pursued the idea of countably additive measures on a

 cardinal algebra, i.e. cardinal algebra homomorphisms from A to [0, •].

 The collection A* of all such homomorphisms forms a cardinal algebra

 "dual" to A. This train of thought is followed in [12], where a

 rudimentary duality theory for cardinal algebras is worked out.

 As with most duality theories, there is a natural evaluation map
 M M

 T : A ■+ A defined by T(a)(y) = y(a). Although T need not map onto

 A, it can be shown (lemma 5.1) that under some hypotheses, a functional

 U e A** is absolutely continuous (in fact, equivalent, in the measure-
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 theoretic sense) with respect to T(a) for some a e A. If some sort of

 Radon-Nlkodym Theorem were available, we could then perhaps write

 U(u) - ft dT(a) .
 u

 To interpret such an expression, we need to develop an Integration theory

 for measures on a cardinal algebra.

 The main question to be answered in such a development concerns the

 proper domain for the functions to be integrated. In [5], Fillmore used the

 Stone space of a certain Boolean sub-algebra of A as a domain on which

 to represent elements of A as functions (e.g. his Theorem 3-11)- This

 technique, which applies only under very special hypotheses, will not work

 here, but can be replaced by the following device: consider a Stone dual

 of the distributive lattice Idl(A), the algebra of all ideals of A. This

 is our approach, although we make use of Priestley's ordered-space version

 of the Stone dual space [7], since it results in the technically more

 pleasing environment of a compact Hausdorff space. Functions to be

 integrated are defined on this compact dual space; measures u e A* and

 elements c e A together induce a Baire measure on the dual space, and

 (») ft du
 c

 is defined as an ordinary (Lebesgue) integral of f over this dual space.

 The expression (*) becomes a tri-linear form in the arguments c, f, u.

 It is the author's belief that cardinal algebras form a very natural,

 technically pleasing setting for measure theory: very little power is lost

 with the omission of Boolean complementation, and Tarski' s refinement postulate

 is, for many arguments, exactly the required tool.
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 §1 . Preliminary results

 A cardinal algebra is a set A together with a commutative and

 associative operation of countable sum

 (a0> alf ...)

 and a distinguished element 0 e A which serves as an additive identity;

 furthermore, the system (A, +, 0) is assumed to satisfy two key axioms:

 Refinement postulate: If a + b = E cn in A, then one may write

 a = £ an and b » £ bn in such a way that an + bn - cn for each n.

 Remainder postulate: If an » bn + an+ļ for n = 0, 1, . .., then

 there is some c e A such that

 an - c + bn + bn+1 + ***

 for each n.

 We shall make use of a number of basic results concerning the

 arithmetic theory of cardinal algebras. All of these may be found in the

 first few chapters of Tarski' s treatise [15], but a few have been selected

 for special mention.

 1.1 General refinement lemma: Suppose that £ an ■ I bm in a

 cardinal algebra A. Then there are elements dnra in A such that

 an - I dnm <each n)
 m
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 bm - I d rim <each m)-
 n

 Indication: This is Theorem 2.1 in [15].

 In a cardinal algebra A, we use the following notational conventions:

 Oa « 0

 na-a+a+'-'+a (n times)

 wa=a+a+a+ ••• .

 Write a á b in case there is some c e A with b = a + c. The relation

 ¿ is a partial order on A [15; 1.31].

 1 . 2 Lemma : Suppose that a ¿ J bn in a cardinal algebra A. Then

 there are elements an in A such that a - £ an and an ¿ bn.

 Indication: This follows easily from the refinement postulate. It is

 Corollary 2.2 in [15].

 1.3 Interpolation lemma: Suppose that an and bn are sequences

 of elements in a cardinal algebra A such that an ¿ bra for each n and

 m. Then there is some c e A such that an á c ¿ bra for each n and m.

 Indication: Theorem 2.28 in [15].

 Cardinal algebras occur throughout mathematics: examples occur in

 algebra, analysis and the theory of partially ordered structures. Here

 are a few.
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 1 .4 Example: A = [0, ®] under ordinary addition of extended real

 numbers.

 1 .5 Example: A = {0, 1, 2, »}, again under ordinary addition.

 1 .6 Example: Any countably complete and countably distributive

 lattice A with least element 0 and £ an defined as the supremum of

 the elements an. See 15.10 in [15].

 1 .7 Example: The collection A of all Borei- isomorphism type of

 separable metric spaces: if tj t2 ... are the types of spaces

 Xj X2 ..., then tt + t2 + ••• is the type of the topological sum of the

 Xn. [15; pp. 234-5].

 1.8 Example: Let (X, 8) be a measurable space and let A be the

 collection of all B-measurable functions f : X ■+ [0, •]. Under point-wise

 addition of functions, A becomes a cardinal algebra. This is a result

 of Chuaqui [1].

 1.9 Example: Let (X, B) be a measurable space and let A be the

 collection of all measures on (X, B). It follows from results in [12]

 that A is a cardinal algebra.

 1.10 Example: Let A, A, ... be cardinal algebras. Then so is

 A » A, X A2 X ••• under co-ordinate-wise sum. See [15: Theorem 6.12].

 If A is a cardinal algebra, then F c a is a semi-ideal of A if

 1 ) F is non-empty;
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 2) a e F and b ¿ a imply b e F;

 3) a, b e F implies a + b e F.

 If 3) can be replaced by

 3') aļ a2 ... e F implies a, + a2 + ••• e F,

 then F is an ideal of A. The collection Idl(A) of all ideals of A

 becomes itself a cardinal algebra: the addition operation is defined by

 Iļ + I2 + ••• = {aj + a2 + ••• : an e In}.

 (See chapters 9 and 10 of [15] for details.) When partially ordered by

 set-theoretic inclusion, Idl(A) become a distributive lattice: infimum

 and supremum are given by

 I, AI, - I, (1 I2 II V I, ■ I, + I2

 whilst {0} and A are, respectively, the least and greatest elements

 of Idi (A). The smallest ideal containing a e A is

 1(a) = {b e A : b Ś u>a},

 the principal ideal generated by a.

 Given cardinal algebras A, and A2, a function a : Aj A2 is a

 (cardinal algebra) homomorphism if

 a(0) » 0 and a(aj + a2 + •••) = a(a,) + a(a2) + ••• .
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 A homoraorphism y : A [0, «•] is a measure. The collection of all

 measures on A we denote by A*. Under point-wise addition of functions,

 A* becomes a cardinal algebra [12: 2.1]. Given y in A* and an ideal

 I c A, we define

 yj(a) - sup{y(b) : b ¿ a and b e I}.

 Then we have

 1.11 Lemma: The function yi is a measure on A.

 Proof : Certainly yj(0) = 0. Suppose that a = ai + a2 + ••• and

 that b £ a with bel. From lemma 1.2 it follows that b - £ bn with

 bn á an. Thus

 y(b) = y(b,) + y(b2) + ••• ¿ yj(aj) + yj(a2) + ••• .

 Taking the supremum over all such b yields

 yj(a) á yj(a,) + yj(a2) + *** •

 Now suppose that a «= a, + a2 and that bt ¿ a, and b2 ¿ a2 with

 b,, b2 in I. Then b, + b2 ¿ a with b, + b2 e I, so that

 yj(a) ^ u(b, + b2) = y(b,) +y(b2).

 Taking the supremum over all such b, and b2 yields

 yj(a) Z yiíaj) + yj(a2).

 We have shown that yj is finitely additive and countably sub-additive.
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 Finally, suppose again that a = a, + a2 + ••• . Then

 Mj(a) 2 Mi(ai + ••• + an)

 " ) + •••+ |ij(an) ;

 taking n ® yields countable super-additivity.

 Q.E.D.

 Certainly, if I c J, then pj £ pj. Also, if I - {0}, then yj - 0.

 Finally, - p. Some of our work will rely on the observation that for

 each a e A, the function I -► ui(a) behaves as a sort of generalised

 measure.

 1.12 Lemma : Suppose that ... are measures on a cardinal

 algebra A and that I £ A is an ideal. For each c e A, there is some
 (n) (n)

 c' Ś c such that c' e I and m(c) „ y(c.) for each n>

 (n) (n)
 Note: If also mi(c) < «, and we write c = c' + c", then y(b) = 0

 (n)
 whenever b ¿ c" with bel; otherwise put, we have yjic") = 0.

 Proof: Fix n. For each k Ž 1 , there is some aj< e I such that

 a^ S c and

 (n) (n) (n)
 yía^) Ì Uļ(c) - 1/k if yj (c) < •

 or

 (n) (n)
 li(ak) 2 k if yi(c) = • .

 Use the interpolation property (lemma 1.3) to find a e A such that

 ak Ú a for each k and such that a Sc and a Ś a, + a2 + ••• . This
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 (n) (n)
 last inequality implies that a e I; the first shows that Mi(c) = y(a).

 We have shown that for each n,. there is some cn S c such that
 (n) (n)

 cn e I and yj(c) = y(cn). Again apply interpolation (1.3) to find c'

 such that cn Š c' for each n and such that c' ¿ c and

 c' £ cx + c2 . We have c' e I and

 (n) (n) (n) (n)
 lij(c) ¿ y(c*) 2 v(cn) - ui(cn),

 with equality as desired.

 Q.E.D.

 1.13 Measure extension lemma: Let G be a subset of a cardinal

 algebra A such that a c G and b ¿ a together Imply that b e G.

 Suppose that : G -»• [O,00] is a function such that |jl(0J = 0 and such that

 whenever a « £ an is an element of G, then |i(a) = J p(an). Then y extends

 to a measure p. defined on A.

 Indication: One such desired extension may be defined by

 u(a) - sup{[ y(bn) : ļ bn Í a, bn e G} .

 Certainly, y(a) - y(a) for a e G. The technique used to prove lemma

 1.11 will show that y is a measure.

 Q.E.D.

 If y is a measure on A, and a e A, say that y is o-f inlte at a

 if a •= £ an with y(an) < • for each n. The collection of elements

 o-finite for y forms an ideal of A. If y and v are measures on A,
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 say that v is absolutely countinuous with respect to (written

 v << y) if y(a) = 0 implies v(a) = 0 (equivalently, v ¿ wy). The

 collection of all ve A* such that v « y forms an ideal of A*: it

 is the principal ideal of A* generated by y.

 Say that a cardinal algebra A is countably generated (e.g.) if there

 is a sequence a, a2 ... In A such that every element of A is a sum of

 elements from this sequence. The cardinal algebra A = [0, •] is e.g. -

 simply use rational elements as a generator.

 1.1 M Lemma: Let N - {0, 1, ...,»} be the cardinal algebra of

 example 1.5 and let N" denote its countable product. A cardinal algebra

 A is e.g. if and only if there is a homomorphism mapping Nw onto A.

 Proof: Given x e let x(n) indicate its n-th co-ordinate.

 Define x, x2 ... in Nw by

 '1 n - k

 xk(n) - '

 lo n 4 k.

 Then {xlt x2, ...} generates N^. If <p : Nu + A is a homomorphism

 mapping Nw onto A, then ^(x,), <p(x2),...} generates A.

 Conversely, suppose that {a,, a2, ...} generates A. Define

 <p : Nu ■+ A by

 tp (n^ f rij i . . . ) ■ ^ n^a^ .

 Then q> is a homomorphism onto A.
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 Q.E.D.

 This result immediately implies the following corollary.

 1 ♦ 1 5 Lemma : Suppose A = Aļ x A2 x ••• is a product of the

 cardinal algebras An. Then A is e.g. if and only if each An is e.g..

 I do not know the answer to the following problem. Its resolution in

 the positive would imply that A* is e.g. whenever A is e.g..

 1.16 Question: Is every sub-algebra of a e.g. cardinal algebra

 again e.g.?

 1.17 Question: Is A* e.g. whenever A is e.g.?

 A cardinal algebra A we call separable if every subset of A

 well-ordered by á is countable. Clearly, every sub-algebra of a

 separable cardinal algebra is again separable. Also, a countable product

 of separable algebras is again separable. Thus [0, ®] and [0, «]u are

 separable. Indeed, every e.g. cardinal algebra is separable. But

 A = to, U {w,} under the operation

 a, + aä + - inf(a,, a2, ...)

 is a separable cardinal algebra, yet is not e.g..

 1.18 Lemma : Let A be a separable cardinal algebra. Then

 1 ) A is a complete, distributive lattice;

 2) if B c a, then there is some countable C c B with
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 sup C » sup B.

 Note: In particular, this means that A has a largest element.

 Indication: This may be pieced together from the following points in

 Tarski' s book [15]: Theorem 3-35, Theorem 3.4, Theorem 3.21.

 1.19 Lemma : If A is a e.g. cardinal algebra, then A* is

 separable.

 Proof: By lemma 1.11, there is a homomorphism <p mapping Nu onto

 A. Define <p* : A* ♦ [0, ®]u by

 <P*(n)(n) = u(<P(xn)),

 where xn is as in the proof of lemma 1.11. Then <P* is a homomorphism

 and is one-one. Thus A* is isomorphic with a cardinal sub-algebra of

 [0, ®]u. It follows that A* is separable.

 Q.E.D.

 We now turn our attention to the representation theory for

 distributive lattices developed by Priestley [7] and improving on earlier

 work of Stone [133- Let ¿ be a partial order on a set S. A set U c S

 is increasing if u e U and v £ u together imply v e U. If S is also

 a topological space, one calls (S, Š) totally order disconnected if

 whenever a ^ b in S implies that there is some clopen increasing U £ S

 with a e U and b e S - U. Clearly, this implies that S is Hausdorff.

 Also, the clopen increasing subsets of S are closed under finite union
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 and intersection and so constitute a lattice, the so-called dual lattice of

 (S, <).

 1.20 Priestley's Theorem: Let (L, £) be a distributive lattice

 with top and bottom (1 and 0). Then there is a totally order disconnected

 compact space (S, Ś) such that (L, Ś) is isomorphic to the dual lattice

 of (S, <).

 Indication: This is Theorem 1 in [7].

 The space S may be constructed as the set of proper prime ideals of

 L with the desired isomorphism sending a e L to the set Ua of all

 prime ideals of L not containing a. The order on S is given by

 s á s' in case the prime ideal s contains the prime ideal s' . Call S

 the Stone-Priestly dual space of L. Priestley's Theorem has the advantage

 over Stone's original in that it produces a Hausdorff space (not merely a

 T0 space).

 Given a cardinal algebra A, the set L - Idl(A) of all cardinal

 algebra ideals of A forms a distributive lattice, as mentioned before.

 Thus, we may construct (S, Š) , the Stone-Priestley dual of L » Idl(A).

 Each ideal I e Idl(A) is thus identified with a clopen increasing set

 I £ S under the Priestley isomorphism. We shall make extensive use of the

 correspondence I •+ I in the sequel.

 We shall also require the use of a very nice result of Tarski

 regarding the extension of finitely additive measures in a very general

 setting. Let (T, +) be a commutative monoid with neutral element 0: we
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 mean that + is an associative, commutative operation on T and that

 0 e T is an identity element for + . Call a function g : T ■+ [0, •] a

 mass-function on T if g is a monoid-morphism: g(x + y) « g(x) + g(y)

 whenever x, y e T. We wish to know when a function f defined on a

 subset U of T extends to a mass-function on T. Define a relation Ú

 on T by setting x ¿ y if there is some z e T with y « x + z. (Note

 that ¿ might not be a partial order on T.)

 1.21 Tarski extension lemma; In the context just outlined, suppose

 that f : U [0, •) is a function on a set U c T. Then f extends to

 a mass-function on T if and only if the following condition is satisfied:

 (*) Whenever xlt xn, xn+ļ , xm are elements of U such

 that x, + ••• + xn š xn+i + • • • + xm in T, then

 f(x,) + + f(xn) ¿ f(xn+ļ) + ••• + f(xm).

 Indication: This follows from Satz 1.55 in [1*0, keeping Tarski's

 Definition 1.11 in view.

 To conclude this section, we state a couple of basic results from

 elementary measure theory.

 1.22 Lemma: Let C be the algebra of clopen subsets of a compact Hausdorff

 space S. Every finitely additive measure m : C -»■ [0, •) extends

 uniquely to a countably additive measure on the o-field generated by C.

 Note: If S is a totally disconnected compact space, then this is

 the Baire o-field of S, which separates points.
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 Indication: Since a disjoint union of infinitely many non-empty open

 sets cannot be compact, ra is already countably additive on C . The

 Caratheodory extension applies. See [8; p. 295].

 1.23 Lemma: Suppose that (S, 8) is a measurable space and that

 Bfc is a family of sets in 8 indexed by t ü 0 with B# - S and such

 that Bfc d whenever t Ú t' . Then there is a 8-measurable function

 f : S + [0, •] such that

 f(s) 2 t for s e Bf

 f(s) ¿ t for s e S - Bt .

 Indication: Such a function f may be defined by the formula

 f(s) - sup{t : s e Bt , t rational}.

 Compare lemma 11.2.9 in [8].

 Lastly, we mention our use of the symbol 1ß to denote the indicator

 function of a set B:

 'l if X e B

 1B(x) ° 4

 ^ 0 if X e B .
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 §2. Integration

 At the outset, it is not clear how to develop a natural integration

 theory for cardinal algebras. The measures are defined simply enough, but

 where are the functions to be integrated? A study of the classical proof

 of the Radon-Nikodym theorem provided the motivation for our approach, and

 indeed, in section 1 we present a type of Radon-Nikodym result for measures

 on cardinal algebras.

 In this section, we show how each measure p on a cardinal algebra A

 induces a family of (ordinary) measures on the Stone-Priestley dual S of

 the lattice Idl(A). The functions to be integrated are then functions on

 S.

 2.1 Proposition: Let p be a measure on a cardinal algebra A and

 suppose that S is the Stone-Priestley dual of the distributive lattice

 Idl(A). Let C c A be the ideal of all elements a-finite for y. Then

 there is a unique function c + <PC defined on C such that

 1) each <pc is a Baire measure on S;

 2) whenever I £ A is an ideal, then <ł>c(I) - mj(c);

 3) the function c ■* <PC is a cardinal algebra homomorphism defined

 on C.

 Demonstration: First, we suppose that p(c) < •». Define 6 to be

 the set of all functions on S of the form 1jç 12 +1k + *" + 1k » where 12 n

 n is a positive integer and K1 ... Kn are clopen sets. Clearly, G is
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 a partially ordered monoid; also, if g and g' are elements of G , then

 g á g' point-wise on S if and only if there is some g" in G such

 that g' » g + g" (G is a "divisibility monoid"). Let H be the set of

 all functions on S of the form if, where I is an ideal of A. We now

 define a function f on H by setting f ( 1 j ) = yj(c). Since the

 correspondence I ■+ I is one-one, f is well-defined on H.

 It is our wish to extend the domain of f to all of G by means of

 Tarski's Theorem (lemma 1.21). To this end, we make the

 Claim: If i!

 (*) 1 j ( s ) + ••• + 1j (s) ¿ 1j (s) + ••• 1j (s)
 1 n n+1 m

 for each s e S, then

 (**) yj (c) +••*+ yj (c) 5 yj (c) + ••• + yj (c).
 1 n n+1 m

 Proof of claim: Put I = {1

 k » 1, ..., m, we may write c = C|< + c£ with c^ e I|< and yj (c) - y(Cļ<)
 k

 as in lemma 1.12. For each b e I^ with b Ś c¿, we have y(b) » 0.

 Using refinement, we may find, for each M £ I, elements c(M) such that

 c - J, {c(M) : M c I }

 and such that for each k = 1, ..., m,

 c^ - I tc(M) : k e M Ç 7 }

 Ck " 1 te (M) : k 4 M £ I } .
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 It suffices to prove the inequality (**) for each element c(M).

 Next, let I0 be the ideal of all a e A with y(a) = 0 and let

 I(c(M)) be the principal ideal generated by c(M). There are two cases to

 consider. If y(c(M)) « 0, inequality (**) is trivial. In the other case,

 jj(c(M)) > 0 and I(c(M)) I0. Choose s e ï(c(M) - ï0. We have

 I(c(M) ) c Ik if k e M

 I(c(M) fi Ik ç i0 if k e I - M

 so that

 Vi (c(M)) - y (c(M) ) if k e M
 k

 jit (c(M) ) =0 if k e I - M.
 k

 Put M « N U P , where ,V c {1 , . . . , n} and P c {n+1 , . . . , m} .

 Inequality (*) applied at the chosen point s yields card(W) á card(P).

 Inequality (**) follows. The claim is proved.

 Tarski's Extension Theroem (1.21) now applies: the function f

 extends to a homomorphism f of G into [0, •]. The mapping K -► f(lj()

 is therefore a finitely additive measure defined on the clopen algebra of

 S. By lemma 1 .22, this mapping extends to a Baire measure <PC on S. For

 each ideal Iça, we have

 (***) <PC(Ï) - f(1ï) - yi(c) .

 As noted in [7], the collection of all such I generates the clopen
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 algebra and hence the Baire o-field. Since the collection is closed under

 finite intersections, Dynkin's Lemma [3 : 1.6.2] implies that <pc is the

 unique Baire measure on S satisfying (***). Furthermore, the same point

 shows that if c ■ Î cn, then <PC » ][ <PC .
 n

 We now turn to the case where c is only a-finite for p. Write

 e = I cn with y(cn) < • for each n and define *PC - £ <PC • We show
 n

 that <l>c is well-defined: if c « £ c^ - I cn with y(cn) < •, then the

 refinement property (lemma 1.1) implies that

 cn " I ^nm cm " I ^nm
 m n

 for certain elements dnm. Then, by our previous remarks,

 r r r r r

 I r ^c * I r I r <i>d = L r I r <Pd
 n n n m nm m n nm

 - I <PC'
 m m

 as desired. It then becomes obvious that c <PC is a cardinal algebra

 homomorphism on C.

 Q.E.D.

 Let |i be a measure on a cardinal algebra A and let S be the

 Stone-Priestley dual of Idl(A). Suppose that y is o-finite at c e A

 and that f is an extended real-valued function on S. We say that f is

 y-integrable over c if f is ^-integrable on S (in the usual sense

 of Lebesgue). Here, <PC is the unique measure on S guaranteed to exist
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 by proposition 2.1. In this definition, we shall mean that f is Baire-

 raeasurable on S; however, the definition could be extended to Borei

 functions by forming the regular Borei extension of <PC. In any case, we

 may then define the integral of f over c by

 J fdy - / fd<pc .
 c S

 In view of the definition of <pc, one may more descriptively write

 J fdy - J f(s)yd3(c) .
 c S

 It is also clear that this Integral may be defined under the assumption

 that f is non-negative and measurable. We have

 2.2 Lemma: In the same context, suppose that the integrals

 / fdu /f'dy / f"dy
 ccc

 are defined. Suppose that c « £ cn and y » £ yn and f « f + f" .

 Then

 1) / fdy - I J fdy
 c n cn

 2) / fdy - I j f dyn
 c n c

 3) / fdy = / f'dy +/ f "dy .
 ccc

 Indication: Part 1 follows from the countable additivity of the map
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 c ■* (pc. For part 2, we need verify only the

 Claim: For each ideal I c A, we have the equality

 Ml(c) « I Wn,l(c) •

 Proof of claim: We check this when y(c) < » and rely on

 a-f initeness. By lemma 1.12, there is some c' e I such that c' ¿ c and

 Ul(c) = y(c') Mn,l(c) = •

 The claim follows easily.

 Part 3 follows from elementary properties of ordinary Lebesgue

 integration.

 Q.E.D.

 In view of this result, the integral given by

 / m
 c

 may be considered as a tri-linear form, countably additive in each of the

 arguments c, f and y.

 2.3 Lemma: In the same context, suppose that f is non-negative and

 measurable on S. Then

 / fdy = f <PC {s : f ( s ) £ t} dt
 c Jo
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 * ļ < Pc Is : > t} dt .
 0

 Indication: In the case where y(c) < • , this is a standard

 application of Fubini's Theorem for Lebesgue integrals (vide e.g. [3: page

 1633). For c o-finite, use additivity (lemma 2.2.1) and the ordinary

 Monotone Convergence Theorem.

 There are several ways to define the integral of f over elements c

 at which y is not o-finite. Since our applications apply only to the

 o-finite case, we refrain from making a definition in this situation;

 future applications will perhaps make a particular formulation appear most

 natural.

 We now formulate versions of the classical convergence theorems of

 Fatou, Beppo Levi and Lebesgue. Each follows immediately from the

 corresponding classical result applied to f and the measure <i>c.

 2.*' Proposition: Let y be a measure on a cardinal algebra A and

 suppose that y is o-finite at c. Let cpc be the measure induced by y

 on the Stone-Priestley dual space S. If f, f2 ... is a sequence of

 non-negative measurable functions on S such that fn •» f <PC " almost

 everywhere, then

 J fdy Ś lim inf / fn dy .
 c n c

 2.5 Proposition: In the same context, suppose that fn(s) increases

 to f(s) as n •» « for <Pc-almost all s e S. Then
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 J fdp » lim J fn dy .
 c n c

 2.6 Proposition: In the same context, suppose that g and

 fj f2 ... are measurable, extended real-valued functions on S converging

 <PC - almost everywhere to f. Suppose that |fn| á |g| a.e. on S and

 that g is y-integrable over c. Then i*! f2 ... and f are

 y-integrable over c, and

 J fdy ■ lim /fn dp .
 c n c
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 §3- Signed measures

 Aside from being interesting in their own right, signed measures play

 an important role in the usual proof of the Radon-Nikodym Theorem. In this

 regard, what holds for ordinary measures applies equally to the case of

 measures on cardinal algebras; the results of this section will be used to

 prove a theorem of Radon-Nikodym type in the next section. Unfortunately,

 signed measures cannot be defined on an entire cardinal algebra: one runs

 into the usual problem of collision of infinities « - ». Thus, signed

 measures will be defined on semi-ideals of a cardinal algebra.

 Let F be a semi-ideal in a cardinal algebra A. A function

 y : F -»■ [-», «] is a signed measure on F if

 1) y assumes at most one of the values +« and

 2) y(0) - 0;

 3) whenever a e F and a - a0 + a, + • • • , then

 y(a) « y(a0) + + ••• , with absolute convergence if jy(a)| < «.

 An element u of F is positive [resp. negative] with respect to y if

 y(v) 2 0 [resp. y(v) ¿ 0] for each v i u. Say that u is null if it is

 both positive and negative.

 3 . 1 Lemma : Let u be positive [resp. negative] with respect to the

 signed measure y on F. Then each v £ u is positive [resp. negative].

 If v0 vl ... are positive [resp. negative], and v * v0 + v, + •••

 belongs to F, then v is positive [resp. negative],
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 Indication: The first assertion is obvious. The second follows from

 lemma 1.2.

 3 . 2 Lemma : Let p be a signed measure on F and suppose that

 b e F is such that 0 < y(b) < «. Then there is some positive c á b

 with y(c) > 0.

 Proof: If b is positive, there is nothing to prove. If not, let

 n0 be the smallest positive integer for which there is some c0 Ś b with

 p(c0) < - 1/n0. We proceed inductively: suppose that c0 c1 ... c^-ļ

 have been defined so that c0 + Cļ + ••• + c^-ļ ¿ b. Let n^ be the

 smallest positive integer for which there is some C|< such that

 c0 + c, + ••• + S b and 11(0^) < - 1/n^.

 Let c be an element such that

 b = c + c0 + c, * • • • .

 Then

 y(b) » u(c) + £ u(C(<)

 with the infinite series absolutely convergent. It follows that £ 1 /n^

 converges and therefore that n^ •»• « as k •+ ®. Also, y(c) > 0.

 We now show that c is a positive element. Given e > 0, choose k

 large enough that
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 1 < e .

 nk-1

 Suppose that u ¿ c with y(u) < - e < - (n^ -1 )~1 . This contradicts

 the definition of n^ and c^. Thus u ¿ c implies y(u) t - e.

 Since e > 0 was arbitrary, c is indeed positive.

 Q.E.D.

 We now formulate and prove a version of the Hahn decomposition theorem

 for cardinal algebra signed measures.

 3.3 Proposition: Let y be a signed measure on a semi-ideal F.

 For each a e F, we may write a - p + q, where p is positive and q

 negative.

 If a = p' + q' is another such decomposition, then there i3 a

 positive p" and negative q" such that

 p = p" + p q •= q" + s

 p« » p" + p» q' ■ q" + s' ,

 where r r' s s' are null elements.

 Demonstration: Without loss of generality, we assume that y(b) < •

 for b e F. Define

 y - sup{y(c) : c á a, c positive}.

 Choose elements cn and dn such that a = cn + dn, cn is positive, and

 y(cn) > y ~ 1/n • Since
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 a = <?! + d! = c2 + d2,

 we may use refinement to write

 ci " ei i + ei2 * ei i + eji

 d1 m e2 , + c22 ^2 m ei2 + e22 •

 Put Pļ = Cj and p2 - c, + e2, ■ en + el2 + e21. Then Pj and p2 are

 positive, p, á p2, and y(p2) i y(c2) . Continuing in this wise, we may

 produce a sequence Pi p2 p3 ... of increasing positive elements with

 w(pn) Ž u(cn) Ž y - 1/n .

 Put p = sup pn. Then p is positive, and y(p) - y.

 Choose q so that a = p + q. If uáq with y(u) > 0, then by

 lemma 3*2, there is some positive v ¿ u with y (v) > 0. Then p + v ¿ a

 is positive, so that y(p + v) á y. But this implies that

 u(p) < p(p) + u(v) - y(p + v) ¿ y - ļi(p) ,

 a contradiction. It follows that q is negative.

 The last statement of the proposition follows quickly from the

 refinement property.

 Q.E.D.

 Continuing with this train of thought, suppose that b ¿ a » p + q.

 Then (lemma 1.2), b = u + v with u ¿ p and v £ q. Set
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 y+(b) - ii(u) y-(b) - -y(v) .

 A refinement argument shows that y+ and y- extend to measures on the

 ideal generated by F. By lemma 1.13 u* and y- extend to measures on

 the algebra A. Then u is the restriction of y«- - y- to F. This is

 the "Jordan decomposition" of y.

 In the usual Hahn decomposition for measures defined on o-fields, the

 underlying space is partitioned into disjoint sets- one positive, one

 negative. The notion of disjolntness is not so easy to deal with in the

 context of cardinal algebras. The following lemma, which shall be used in

 the next section, attempts to master this difficulty.

 3.H Lemma: Let u be a measure on a cardinal algebra A and

 suppose that '> is a signed measure on a semi-ideal F c A. Given a e F

 with y(a) < •, we may write a - p ♦ q with

 1 ) p positive for v ;

 2) q negative for v ;

 3) y(b) - 0 whenever b û q is positive for v.

 Proof: Let a - p* + q' be a Hahn decomposition of a as in

 proposition 3-3. Define

 s - sup{y(b) ; b á q' is positive for v}

 and take bn positive for v with bn á q' and llmy(bn) - s. Use

 interpolation (lemma 1.3) to find c with bn i c ¿ J bm for each n
 and such that c á q'. Then c is positive for v, and y(c) - s. Find

 q such that q' - q + c and put p - p' + c. Then a - p + q is a Hahn

 decomposition with the desired characteristics.

 Q.E.D.
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 §4 . Radon-Nikodym theorems

 We are now ready for a statement and proof of the Radon-Nikodym

 theorem for cardinal algebras. Recall that a-finiteness is a natural

 hypothesis for such a result.

 . 1 Proposition: Let y and v be measures on a cardinal algebra

 A with v << y. Let S be the Stone-Priestley dual space of Idl(A).

 There is a Baire-measurable function f : S ■* [0, •] such that

 v(c) 'J f dp
 c

 whenever y is o-finite at c.

 Demonstration: Let F be the semi-ideal of all a e A with

 y (a) < •. For each t e [0, »), we see that v - ty is a signed measure

 on F. Let It be the ideal generated by the elements of F that are

 positive for v - ty. Clearly, t ¿ ť implies that 1^ £ It* and

 therefore 1^ 2 It' as subsets of S. Lemma 1.23 asserts the existence of

 a Baire-measurable function f : S -»• [0, «] such that

 f(s) £ t for s e It i and

 f(s) ¿ t for s e S - ït .

 (In fact, one can check that f is lower semi-continuous on S.)

 Now fix a positive integer N and assume that y(c) < •. For each

 k Ž 0, use lemma 3- 'l to write c = p^ + with
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 1 ) pk positive for v - -y ;
 N

 2) qk negative for v - Km ;
 N

 3) MÍb) - 0 whenever b ¿ qk is positive for v - Km •
 N

 We insist that p0 « c and q0 - 0. We now define elements uk vk ck

 by Inductive process. Put u0 = p0 « c and v0 « q0 - 0 and suppose that

 uk and vk have been defined so that c « uk + vk. Use refinement to

 write

 uk - du + dl2 pk+1 - du + d21

 Vk " ^2 1 + ^2 2 Qk+1 m ^12 + ^2ł •

 Put

 uk+i - d,, vk+i - d12 + d21 + dł2 ck - d, j .

 We note that

 uk " uk+1 + ck

 ck S uk * Pk

 ck * <lk+1

 for each k •» 0, 1, 2, ... .

 Applying the remainder postulate to the relation uk - uk+i + ck

 yields the existence of an element c® such that, for each k £ 0,
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 uk = c« + Ck + Ck+1 + ••• ;

 in particular, e» ¿ uk for each k, and

 c » c. + c0 + C! + • • • .

 Claim 1 : For k = 0, 1, we have the inequality

 JSp(ck) ¿ J f dp .
 N ck

 Proof of claim: As noted previously, ck ¿ uk ¿ pk and pk e Ik/N-

 Thus ck e Ik/N* ^e calculate:

 J f d v m J f(s) d<pc k (s) ck s k

 £ / f(s) d(pc (s)
 Ïk/N k

 £ ii mi (ck) - Jí y(ck) ,
 N k/N N

 as desired.

 Claim 2: For k -0, 1, ..., we have the inequality

 J f dp S ķli y(ck).
 ck N

 Proof of claim: We use lemma 2.3 to write
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 f f du - f f(s)d<n (s) " f (pc {s : f(s) > t}dt
 ck S ck J0 k

 00 00

 á = / PI (Ck)dt
 0 0

 k+1

 N r 00

 - J UI (Ck)dt + J uIt(ck)dt .
 "T"

 Since ck á qk+i . we see that y(b) - 0 whenever b á ck Is positive for

 v - JUL y .
 N

 (We have used lemma 3 • ï ) It follows that yj(ck) - 0 for J - Ik+ļ .
 ~Ñ~

 For t ¿ (k+1)/N, we have

 MI (ck) ¿ Uj(ck) *= 0,
 t

 so that

 kt 1 k+1
 N N

 í ť dv ¿ i jaj (ck)dt Ś í vi(ck)dt « JílL y(ck)
 ck Jo 1 Jo N

 as desired.

 Since ck ¿ pk and ck ¿ qk+ļ , we have the inequality

 JîLy(ck) K ¿ v(ck) < , y (°k) . N K N
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 Combining this with claims 1 and 2 yields

 vicķ) -JLy(Cķ) á J f dļi Ú vicķ) +J-v(C(<)
 N C|< N

 for k - 0, 1

 (v -^y)(c.) ž o

 for each k. This forces either m(c«,) » 0, or p(c„) > 0 and v(c«,) ■ «.

 In the former case, we use absolute continuity to see that

 v(c<d) - 0 - / f dp ;
 Coo

 in the latter, note that c„ á (k 2 0) implies that c„ e Iç for

 each t Ž 0. Then we have

 f f dy - Í f(s) d(pc (s)
 c„ S

 00
 00

 » J (pc (f"1[t, <»])dt i J vi (c„)dt
 0 0

 oo

 . J vj(c„)dt - « « v ( e® ) .
 0

 Summing over k » 0, 1

 v(c) - J- y(c) ¿ J f dy Š v(c) + J_y(c) .
 N c N

 Since y (c) < ® and N is arbitrary, we have
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 v(c ) m J f d|i
 c

 as desired. The same result follows easily for each c at which y is

 o-finite (using additivity from lemma 2.2.1).

 Q.E.D.

 If f is a function guaranteed to exist by proposition 1.1, we call

 f a Radon-Nikodym derivative of v with respect to y and write

 f - .
 dy

 The usual calculus of such derivatives may be developed. We offer the

 following instance:

 1.2 Proposition: Let y and v be measures on a cardinal algebra

 A and suppose that v << y. Let f be a Radon-Nikodym derivative

 guaranteed to exist by proposition 1.1. Suppose that y and v are

 o-finite at c e A. If g is a function on S which is either

 1 ) non-negative and measurable, or

 2) v-integrable over c,

 then

 (*) J gdv = J gfdy .
 c c
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 Demonstration; Using o-finiteness for p and v together with

 additivity (lemma 2.2.1) and refinement (lemma 1.1), it suffices to verify

 (*) for the case where v(c) < • and p(c) < «. We assume first that

 g - 1j for some ideal I c A. Use lemma 1.12 to write c « c' + c" with

 c' c I and vj(c) - v(c' ) and also pi(c) - p(c'). Let a ♦ <Pa be the

 mapping guaranteed to exist (relative to p) by proposition 2.1. Then

 <pc«(I) - lijíc') - y(c' ) - (pci(S)

 <Pctt ( I ) - ui (c") - 0 ,

 so that

 J 1| dv ■ vj(c) ■ v(c')
 c

 » J f dp ■ / f d(pct
 c' S

 - L f dtpc' " L f d<í>c' + X f d<Pc"
 III

 - / f d«pc - / ij f dp ,
 I c

 as desired. Now both of the set functions

 B ■* J 1g dv B-»J"lgfdp
 c c

 define finite Balre measures on S. Since these measures aeree on sets of

 the form I, they must be equal (use Dynkin's lemma [3: p. 163]).

 Linearity (lemma 2.23) implies the result for g a Baire-measurable

 simple function. Taking limits (proposition 2.6) finishes the work.

 Q.E.D.
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 §5. Application: integral representations for A**

 £ £
 Let A be a cardinal algebra and let A be the second dual of A.

 As in most duality theories, there is a canonical horaoraorphism T : A -»• A**
 £

 defined by putting T(a)(y) - y(a). However, as pointed out in [12], A

 need not separate the points of A, so that the canonical representation T

 might not be injective; also T is often not a surjection. The version of

 the Radon-Nikodym presented in the previous section allows us to compensate

 for this in some ways. First, we note the following

 5 ♦ 1 Lemma : Let A be a countably generated cardinal algebra and let

 J ¿ M MM.

 T be the canonical mapping from A to A For each U in A , there

 is some element a e A such that U and T(a) are equivalent (mutually

 absolutely continuous) as cardinal algebra measures on A*.

 Proof: Using lemmas 1.19 and 1.18.1, we may put v - sup{y : U(y) - 0}.

 From lemma 1.18.2 follows U(v) = 0. And by the same token, we put

 a «* sup{b : v(b) « 0} and note that v(a) = 0. If now U(y) - 0, then

 U £ v, and T(a)(n) - y(a) $ v(a) = 0. This shows that T(a) << U. Next,

 suppose T(a)(p) = y(a) = 0. Then p << v and y á ojv, so that

 U(p) S U (üjv) = üiU(v) - 0. Thus U « T(a).

 Q.E.D.

 In the context of this lemma, we would like to be able to conclude

 that U «= T(a), i.e. that U(p) = y(a). This would establish an

 isomorphism of A with A**. However, although such an isomorphism

 obtains for some cardinal algebras (A - [0, »] or countable products

 115



 thereof), it fails for others (A = {0, 1, »}). Despite the absence

 of such a general reflexivity result, we can at least say the following:

 if A is countably generated, and y(a) < », then there is a family of

 measures (t£0) majorised by y such that

 U(y) = [ Vfc(a)dt .
 Jo

 Although U may not be evaluation at a, it is a sort of average of

 evaluations of the Vf More can be said of the integral kernel vt, and

 we presently make a formal statement of this result.

 5.2 Proposition; Let A be a countably generated cardinal algebra

 and let U be a measure on A*. For each t 2 0, there is a function

 V£ : A X A* ■+ [0, «•] such that

 vt<I bn» u) - I vt(bn, y)

 vt<b» I Wn) = I vt(b, yn) .

 Also,

 vt.(b, y) ¿ Vt«(b, y) ¿ y(b)

 whenever t 2 t' . There is some a e A such that

 U(y) « J / vt(a, y)dt J 0

 whenever y (a) < ®.
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 Demonstration: Let a be the element guaranteed to exist by lemma

 5.1. Then U and T(a) are equivalent measures. Let f be a Radon-

 Nikodym derivative (f - dU/dT(a)) as In proposition 1.1. Inspecting the

 proof of that proposition, we find that if y ( a ) < •, then

 U(y) - J f dT(a)
 y

 OD

 - J <Pp{ S : f(s) > t}dt
 0

 OB

 - J T(a)j (u)dt .
 0

 Here, y •» <Py is the homoraorphlsm for the measure T(a) from proposition

 2.1, and It c A* is the ideal generated by the positive elements for

 U - tT(a). Define

 £

 vt(* , )j) « sup{p e A : p Í y and p e 1 1 ) -

 Then has the properties advertised, and

 AO

 U(y) - J T(a)j (u)dt
 0

 w

 - J T(a) (vt( • , u))dt
 O

 to

 - J vt(a, y )dt
 o

 as desired.

 Q.E.D.
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