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ON THE BOREL HIERARCHIES OF COUNTABLE PRODUCTS OF POLISH SPACES

1. Introduction. Let X be an uncountable Polish (complete, separable metric) space
and let H = X%, Equip H with the product of discrete topologies and also with the
product of copies of the Polish topology. The former topology will be called
the d-topology and the latter the p-topology (which is known to be Polish).
Topological properties with respect to these topologies will carry the prefix d and
p as the case may be. The d- topology on H gives rise to two hierarchies (of Borel
sets) defined as follows.
Put 20=Ho={A§H:Ais d-clopen },
and inductively define for u < w,,
zu= ((Jm )y
v<u
Ou={4: A°e Ty}
Denoting the Borel o —field on H with respect to p by B, we define
T = l]g'n{A E‘B:Aisd-clopen};
- (Um ),
v<p
Of = (4: A°e3]).
It is not hard to check (as pointed out to us by a referee ) that

3 = U =%
4 <w,
A.Maitra [2] asked whether
(1) TH o= ZuN® for 0 < u< w.

In connection with ( I ) he made the following conjecture ( which he proved for the

case u = 1,2 ).
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(1I1) Suppose 4 and B are two analytic ( £} ) subsets of H such that 4 can be
separated from B by a ¥, set, 0 < 4 < w,. Then there is a 2}‘2 set which separates

4 from B.

Observe that trivially ( II ) implies ( I ). In this short note we shall show that
under a certain category- theoretic assumption, ( II ) is true for all 4 < w, . We
shall obtain this as a simple consequence of results and tecniques of Louveau
developed in [ 1 ]. The relevent definitions and results are reviewed in the next

section.

Note that the above assumption is not consistent with ZFC. However, it

holds in the Levy- Solovay model [ 4 ).

2. Regular and Separating Families of Sets. We shall use standard notation and
terminology from effective descriptive set theory as found in Moschovakis [ 3 ]. All
unexplained notation and terminology are from [ 3 ].

Definition 1. Let X be a recursively presentable ( r.p. ) space. By a coding pair we
shall mean a pair< WX, CX> (or < W, C > when X is clear from the context )

such that
(i) Wisa II} subset of w@¥ X w.

(ii ) C is a NI} subset of X X wWXw whose projection on w¥W X w is W and
such that the relation
(¢, n)EW & (z,00,n ) C

is IIi.

(444 ) For each a, { Cqn ¢ n € w, (o, n) € W } is precisely the class of

all Al(a) subsets of X. Observe that such a coding pair exists ( cf.[ 1; pl4]).

61



Definition 2 ( Louveau ). A family ® of subsets of an r.p. space X is said to be

separating with parameter o, € wWW, if it satisfies the following two conditions:

(i) The set Wy dif {(eyn) EW : Co,n € @} is a Mi(a,) set .

(ii ) If 4, and A, are two Tj(a) subsets of X and if there is a B € ® which
separates A, from A, then there exists a Aj(<ooa>) set in ® which separates 4,
from 4,.

Definition 3 ( Louveau ). Let ® be a family of subsets of a r.p. space X and
o € wW, The separating kernel of ® of order a, written Sq(®), is the family of
Ti(a) subsets of X which can be separated from every disjoint Tia) set by a set

which is Aj(a) and in ®

Clearly, Aj(a) N ® C Sy (®); and if ® is separating, then Zja) N ® C Sq(P).
Notation. For each r.p. space X , let Tx(a) denote the topology generated by the
Tl(a) subsets of X. We shall often drop the superscript when it is clear from the
context. Note that if X i8 a product space the TX(a.) is not the product
topology. In what follows , unless explicitly mentioned, we shall always use
this topology and not the product topology when X i8 a product space. For
A, B C X,we write A ~o B iff AAB ( = (A—B)U (B—A4) ) is T(a) - meager.
Definition 4 ( Louveau ). Let ® be a family of subsets of an r.p. space X. Then ®
is said to be regular with parameter o, € wWW%, if it satisfies the following two

properties:
(i) The set Wg ( cf. Definition 2 ) is Hj(cxo).

( i) Property of regularity: For every real a and for every set E € &,
there is a sequence { Ar : 7 € W } O S<aga> (®) such that

E ~<Qg,a> ( UnA‘n ).
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Theorem 1 ( Louveau ). For each 4 < w,, define a family ®, by the recursion:
o = o;
Opi= (O,
o = U ®y, if \is limit.
<N
Then, each @, is regular ( and for u© > 0 , separating ) if ® is regular, with

parameter < aga, >, where o, is the parameter of ® and ay € WO is a real such

that Iaul = U .

Moreover, let ¢(a, n, E) be the following set relation:
¢(a, n, E)
((vmreW e[ 3B€Al(<apa >N Ym)(<apa >Bm)EE & Coan= X—YC o . sim)))
Plainly, ¢ is I}(a;) —monotone which defines inductively a sequence W% by
W% = Wo:;
W$+1 = {(Q., n) : ¢(x, n, W&)};
wh = UWH, if \is limit.
<
Then, for each ordinal u,
- L
W¢u W .
( For a proof of this theorem see [ 1 ]).

Proof of Conjecture ( II ) . Without loss of generality, we assume that X = w¥;
the result for Polish spaces can be obtained by standard transfer theorems. We

shall identify XX X% with X% for each integer n > 1.

We first make the following easy but important observation.
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Proposition. Any set 4 € X, is of the form A = U Ay , with each

An = A(p) X XY with A(n) C X™.

Thus X, precisely consists of sets of the above type.
Proof. Let A4 Zn) ={(xyy2Zpn): Z(xy-y o) & A}, where
T( Xyt Xn) = {x € XW:(x = Xp o0y ( X )= xn} . Clearly, A4 En) X XY C 4
for every n. Now suppose x = ( X, X,,--)€ A . Since 4 is d -open, thereis n > 1
such that
X € Z( %, Xn) C A.

Clearly ( z,,-, Zn) € 4 En) and hence x € 4 En) x x¥. 0

Let & = { 4 ’(n) X XY: n>0 &4 E’n) C X™ ) and inductively define
¢, as in Theorem 1. It is not hard to see that
Oy = o4 if 1l < u<wy;
{
¢u+1 if u > wg.
Now consider the following statement:
(P) For each n > 1, every subset 4 of ( W% )" has the Baire property relative

to T(at) for every a.

Observe that under the Axiom of Choice statement (®) is not true . However,
in the Levy-Solovay model [ 4 ], it can be shown that (P) holds ( ¢f.[ 1 ] ). As
pointed out to us by a referee AD implies (?)— this can be proved by playing the

Banach - Mazur game with Tj(a) sets.

We now prove

Lemma. Assume that (?) holds. Then the family ®, is regular without parameter.
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Proof. Let < W™, C™> be ( uniformly in m ) a coding pair for X™ and let
<W, C> be a coding pair for X%. Observe that 4 ’(n) (- X" s Al(a) in xn
iff A En) X XY is Ala) in X¥ . Hence
(e, n) € Wd,o
— (a,n)EW & C(a’n)etbo
— (a,n)EW & (M3 {(a, k)EWM & CT k X XY = Cq, n }.
It is easy to check that W(bo is I} . Next observe that if E C X" is Tia), then

E X X¥“ isin Sq ( ®; ). This follows from the Suslin-Kleene Theorem( c¢f. [ 3 ).

Now, fix o and let A € ®,. Then for some n , 4 = 4 ’(n) X XW , where
A ’(n) c X", Since (P) holds, there is a sequence { Ex } of Si(a) subsets of X"
such that A4 En) ~a | %JE‘k ). Hence,
(A{m XXY)D (W E X XY)) = (Am)A(YEL)) X XY
is meager relative to T{(a) by Lemma 2.13 of [ 1 ]. But each Ej X XY € So (@)

by the observation above. Thus A4 has the regularity property.

This completes the proof.
Theorem 2. Assume (P). Suppose 4, and A, are two X; subsets of H such that 4,
can be separated from A, by a I set with u > 1. Then A, can be separated

from 4, by a IIf set.

In other words, Conjecture ( II ) is true for all 4 < w,.
Proof. We shall prove this by induction on u. The result for 4 = 1 is known and
can be easily proved. So assume u > 1 and fix z such that u<wfi and 4,, 4, are

Tl(z) subsets of H.

Now observe that, by the Lemma and Theorem 1, Il is a separating family

with parameter o ( which can be chosen to be recursive in z ). Hence there is a
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set B separating A, from A, such that B is A}(<au, z>) and in MOy .

Fix n such that ( < ay z> n) € WH and chw 2>, n = B. Plainly,

(<ay z>,n) € W“u = W$+1 , by Theorem 1. (We assume for simplicity that
0

u > w.

Hence there exists 8 € Ai(<au , Z>) such that

p H —H-—ucH
(vm(<apa>Bm)eEwy | &cC tapzon = H =R o Bem

Write By, = cH

: 1
<0y Z5, 8(m) for each m. Clearly, each By, is A1(<°‘u , z>) and

in Il,-,m for some 7m < 4. By induction hypothesis, By, € ﬂﬁm and
* _ o - _ . * .
hence U Bm € [nguﬂn) ]a = X5 . Thus B H—UBpy is a Ilu set which

separates 4, from A,. This completes the proof. 7

As an immediate consequence we have
Corollary. Assume (P). Then, for u < w,,
TH = ZuNB.
Remark. As remarked earlier, the statement (®) holds in the Levy-Solovay model.
Consequently, both Conjectures (1) and ( II ) are true in that model.
Postscript. V.V. Srivatsa ( unpublshed ) has proved ( 1) in ZFC.
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