Eric J. Howard, Department of Mathematics, University of California, Davis, CA 95616

## $(\varepsilon, \eta)$ -Approximating Partitions

If  $\delta$  is a positive function on a closed interval [a, b], a  $\delta$ -fine partition of [a, b] is a collection  $\{(I_1, x_1), \ldots, (I_p, x_p)\}$  where  $I_1, \ldots, I_p$  are nonoverlapping closed intervals with union [a, b] such that  $x_i \in I_i$  and diam $(I_i) < \delta(x_i)$  for  $i = 1, \ldots, p$ . Cousin's lemma assures that such a  $\delta$ -fine partition always exists—a fact that is essential to the definition of the Generalized Riemann Integral. Recently, Washek F. Pfeffer has given a Riemann type definition of an integral in  $\mathbb{R}^m$  which is coordinate free and for which a general divergence theorem holds (see [Pfeffer, A Riemann Type Definition of a Variational Integral, to appear]). In this definition, the simple  $\delta$ -fine partitions of the Generalized Riemann Integral are replaced by a partitioning concept which is more general in several directions. Among the generalizations: intervals are replaced by sets in  $\mathbf{R}^m$  with finite perimeters in the sense of De Giorgi; the partitioning points are not allowed to lie in a prespecified exceptional set; and the partition is only required to cover "most" of the set being partitioned. The purpose of this talk was to show how to prove a Cousin-like existence lemma for these more general partitions. The proof uses ideas from [Howard, Analyticity of almost everywhere differentiable functions, Proc. American Math. Soc., at press].