Glen A. Schlee, Department of Mathematics, University of North Texas, Denton, Texas 76203

EXTREME POINT SELECTORS

In [1], L. Baggett states and proves the following selection lemma.

Lemma. [1] Let X be a separable normed linear space, let Y be a closed subspace of X and let R denote the restriction map of X^* onto Y^* . Let K be a compact subset of (X^*, w^*) , and let L=R(K). Then there exists a Borel map $s:L\to K$ such that R(s(y)) = y for all $y \in L$, s(y) is an extreme point of $R^{-1}(y)$ and $y \in ext(L) \to s(y) \in ext(K)$.

The proof of this theorem will follow from our main result.

Theorem. Let X be a separable normed linear space with continuous dual X^* . Let $\mathscr{C}(X^*)$ denote the collection of all nonempty, compact, convex subsets of (X^*, w^*) where w^* denotes the weak—star topology. We give $\mathscr{C}(X^*)$ the relative exponential (Vietoris) topology. Define the multifunction $E: \mathscr{C}(X^*) \to X^*$ by $E(K) = \text{ext } K \in K$, where ext K denotes the set of extreme points of K. Then there is a Borel class 1 selector for E.

Let B denote the unit ball in X^* , i.e., $B = \{x \in X^* : ||x|| \le 1\}$. By Alaoglu's theorem (see [3,p.202]), B is w^* —compact. Furthermore, since X is separable, B is metrizable. Set $B_n = n \cdot B$ for each $n \in \mathbb{N}$. Then for each n, B_n is compact and metrizable. Let $\mathscr{C}(B_n)$ denote the collection of all nonempty, convex, compact subsets of B_n . We give $\mathscr{C}(B_n)$ the relative exponential (Vietoris) topology. Define for each n, $E_n : \mathscr{C}(B_n) \to B_n$ by $E_n(K) = \text{ext } K$. Note that by the Krein-Milman theorem (see [3,p.207]), $\forall K \in \mathscr{C}(B_n)$, $E_n(K) \neq \phi$ and K = cl conv(ext K). We claim

that for each n, E_n has a Borel class 1 selector. This will follow from a theorem of G. Debs.

Theorem [2]. Suppose T is a metric space, X Polish, Gr(F) is a G_{δ} $\alpha>0$ is an ordinal, and $F^{-1}(U)$ is of additive class α for open UCX. Then F has a selection which is of additive class α .

Let us note that $\mathscr{C}(B_n)$ is Polish, and $Gr(E_n)$ is a G_{δ} subset of $\mathscr{C}(B) \times B$. An additional fact is that E_n is lower semi-continuous, i.e.,

 $E_n^{-1}(V) = \{K \in \mathscr{C}(X^*) : E_n(K) \cap V \neq \phi\}$ is open whenever V is open. Therefore, by Deb's theorem, there is for each n a Borel class 1 selector f_n for E_n . Define $f: \mathscr{C}(X^*) \to X^*$ as follows:

$$f(K) = f_n(K)$$
 where $n=least\{m:KCB_m\}$.

Then $\forall K \in \mathscr{C}(X^*)$, $f(K) \in E(K)$. Furthermore, f is of Borel class 1, since

$$f^{-1}(A) = f_i^{-1}(A) \cup [\bigcup_{i \geq 2} f_i^{-1}(A) \cap (\mathscr{C}(B_{i-1}))^c]$$

for any ACX* and since each f_n is of Borel class 1. Hence, f is a Borel class 1 selector for E.

Lastly, we mention that the above result is sharp. In fact, E does not have a continuous selector in the case $X=\mathbb{R}^2$.

REFERENCES

- 1. Baggett, L., A functional analytic proof of a Borel selection theorem, to appear J. Functional Anal.
- 2. Debs, G., Selection d'une multi-application a valeurs G₈, Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 211-216.
- 3. Royden, H.L., Real Analysis, Macmillan Pub. Co., New York, 2nd ed., 1968.