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 EXTREME POINT SELECTORS

 In [1], L. Baggett states and proves the following selection lemma.

 Lemma. [1] Let X be a separable normed linear space, let Y be a closed
 * *

 subspace of X and let R denote the restriction map of X onto Y . Let K be a

 compact subset of (X ,w*), and let L=R(K). Then there exists a Borei map s:L-»K

 such that R(s(y)) = y for all y€L, s(y) is an extreme point of R- *(y) and y€ext(L) -»

 s(y)€ext(K).

 The proof of this theorem will follow from our maun result.

 Theorem. Let X be a separable normed linear space with continuous dual
 * *

 X . Let #(X ) denote the collection of all nonempty, compact, convex subsets of

 (X ,w*) where w* denotes the weak- star topology. We give #(X ) the relative
 * ♦

 exponential (Vietoris) topology. Define the multifunction E: #(X ) -» X by

 E(K) = ext K C K, where ext K denotes the set of extreme points of K. Then there

 is a Borei class 1 selector for E.

 Let B denote the unit badi in X , i.e., B = { x€X : ||x||<l }. By Alaoglu's

 theorem (see [3,p.202]), B is w*- compact. Furthermore, since X is separable, B is

 metrizable. Set Bn = n*B for each nCN. Then for each n, Bn is compact and

 metrizable. Let #(B„) denote the collection of all nonempty, convex, compact

 subsets of Bn. We give #(B„) the relative exponential (Vietoris) topology. Define

 for each n, En : #(Bn) -♦ Bn by En(K) = ext K. Note that by the Krein- Milman

 theorem (see [3,p.207]), VK€ #(Bn), En(K)£^ and K = cl conv(ext K). We claim
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 that for each n, En has a Borei class 1 selector. This will follow from a theorem of

 G. Debs.

 Theorem [2]. Suppose T is a metric space, X Polish, Gr(F) is a G$> a>0 is

 an ordinai, and F~~ ^(U) is of additive class a for open UcX. Then F has a selection

 which is of additive class a.

 Let us note that #(Bn) is Polish, and Gr(En) is a G^ subset of tf(B) * B.

 An additional fact is that En is lower semi- continuous, i.e.,

 En- *(V)={K€ &(X ):En(K)nV^} is open whenever V is open. Therefore, by

 Deb's theorem, there is for each n a Borei class 1 selector f„ for En. Define

 f: #(X ) -» X as follows:

 f(K) = fn(K) where n=least{m:KcBm}.

 Then VK€ #(X ), f(K)€E(K). Furthermore, f is of Borei class 1, since

 r^A) = f7x(A) u IU f^AXX «r(B¡.,))cl
 i >2

 *

 for «my AcX and since each fn is of Borei class 1. Hence, f is a Borei class 1

 selector for E.

 Lastly, we mention that the above result is sharp. In fact, E does not have a
 2

 continuous selector in the case X=R .
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