REFINEMENTS OF THE DENSITY AND /-DENSITY TOPOLOGIES.

 KRZYSZTOF CIESIELSKI1, Department of Mathematics, West Virginia University, Morgantown, WV 26506.

Definitions.

(1) A point $x \in R$ is a density point of $A \subset R$ if

$$
\lim_{h \to 0^+} \frac{m_i ((x-h,x+h) \cap A)}{2h} = \lim_{n \to \infty} \frac{m_i ((x \frac{1}{n}, x + \frac{1}{n}) \cap A)}{2/n} = 1,
$$

 \bullet $\ddot{}$

where m_i stands for inner Lebesgue measure.

(2) $\Phi(A) = \{x \in \mathbb{R}: \text{ is a density point of } A\}.$ (3) $T_N = \{A \subset \mathbb{R}: A \subset \Phi_N(A)\} \subset L$ is a density topology, where L is a family of all Lebesgue measurable sets.

Alternative definitions of the density points.

For a measurable set $A \subset R$ the following are equivalent: (A) 0 is a density point of A;

(B)
$$
\lim_{n \to \infty} \frac{m ((x \frac{1}{n}, x + \frac{1}{n}) \cap A)}{2/n} = 1;
$$

(C)
$$
\lim_{n \to \infty} m(nA \cap (-1,1)) = 2;
$$

(D) $\chi_{n A} \cap (-1,1)$ converges to $\chi_{(-1,1)}$ in measure;

(E)
$$
\forall
$$
 { n_m } \subset N, $n_m \rightarrow \infty$ \exists { n_{m_p} } $\lim_{p \rightarrow \infty} \chi_{n_m}{}_{p}{}_{A} \cap (-1,1) = \chi_{(-1,1)}$ almost everywhere;

and

(B')
$$
\lim_{n \to \infty} \frac{m ((x-1/t_n, x+1/t_n) \cap A)}{2/t_n} = 1 \text{ for all } t_n > 0, t_n \to \infty;
$$

(C')
$$
\lim_{n \to \infty} m(t_n A \cap (-1, 1)) = 2
$$
; for all $t_n > 0$, $t_n \to \infty$;

(D')
$$
\chi_{t_n} A \cap (-1,1)
$$
 converges to $\chi_{(-1,1)}$ in measure for all $t_n > 0$, $t_n \to \infty$;

(E')
$$
\forall
$$
 $\{t_n\} \subset \mathbb{R}^+$, $t_n \to \infty$ \exists $\{t_{n_p}\}\$ $\lim_{p \to \infty} \chi_{t_{n_p}A} \cap (-1,1) = \chi_{(-1,1)}$ almost everywhere.

Definitions. Let J be an ideal of subsets of reals.

(1) A sequence $f_n: R \to R$ converges (*J*) to f if for every subsequence f_{n_p} of f_n there exists a further subsequence f n_{p_q} such that f n_{p_q} converges pointwise to f J-a.e..

 ¹ The presence of the author in the conference was partially supported by a Faculty Travel Grant sponsored by the West Virginia University Foundation.

(2) A point a is a *J*-density point of a set $A \subset \mathbb{R}$ if

$$
\chi_{n}(A-a) \cap (-1,1)
$$
 converges (J) to $\chi_{(-1,1)}$.

 $\Phi_f(A) = \{x \in \mathbb{R}: \text{ is a } J\text{-density point of } A\}.$

 $T'_{I} = \{A \subset \mathbf{R}: A \subset \Phi_{I}(A)\}.$

(3) A point a is a strong *J*-density point of a set $A \subset \mathbb{R}$ if for all $t_n > 0$, $t_n \rightarrow \infty$,

 χ_{t_n} (A-a) \cap (-1,1) converges (J) to $\chi_{(-1,1)}$.

 $\Psi_f(A) = \{x \in \mathbb{R}: \text{ is a strong } J\text{-density point of } A\}.$

 $T''_I = \{A \subset \mathbb{R}: A \subset \Psi_I(A)\}.$

(4) $T_I = T_I \cap B = T_I \cap B$ is an *I*-density topology, where *I* is the ideal of first category sets and B is the family of all sets with Baire property. Evidently,

$$
T^{\prime\prime}_J \subset T^{\prime}J
$$
 for every J ,
\n $T_N \subset T^{\prime\prime}_N \subset T^{\prime}_N$ and $T^{\prime}_I \subset T^{\prime}_I \subset T^{\prime}_I$.

THEOREM. Families T'_{J} and T_{J} form topologies on R.

Example 1. There exists a nonmesurable set $A \subset R$, which does not have the Baire property such that

 $\lim_{n\to\infty}\chi_{n}(A-a)\cap(-1,1) = \chi_{(-1,1)}$ for every $a \in A$.

In particular, $A \in T'_J$ for every J.

Corollary 1. $T_N \not\subset T_N$ and $T_I \not\subset T_I$.

Example 2. There exists a nonmesurable set $A \subset R$, which does not have the Baire property such that A $\subset \Psi_{I_c}(A)$, where I_c is the ideal of sets of cardinality less then continuum c.

Corollary 2. If the Continuum Hypothesis, or Martin's Axiom, holds then

$$
T''_N \not\subset T_N
$$
 and $T'_I \not\subset T_I$.

The above examples and an obvious equation

$$
T_N = T_N \cap L = T_N \cap L
$$

justify the definition (4) of an *I*-density topology as

$$
T_I = T_I \cap B = T^*I \cap B.
$$

Should we define, for an arbitrary ideal J , a J -density topology as

$$
T_J=T^{\prime\prime}J\cap F_J
$$

for some family F_I ? If so, the family F_I should satisfy the condition that

(*) $T''_J \cap F_J$ forms a topology on R.

It would be also very desired to have a condition

$$
^{(**)} \qquad T^{\prime\prime}J \cap F_J = T^{\prime}J \cap F_J.
$$

Example 3. $T_{\{\emptyset\}} \cap F_{\sigma} \cap G_{\delta} \not\subset T_{\{\emptyset\}}$ = natural topology. Example 4. Let I_{ω} stand for the ideal of countable sets. Then topology generated by

$$
T^{\prime\prime}_{I_{\omega}}\cap F_{\sigma}\cap G_{\delta0}
$$
 contains non-Borel set. Moreover,
$$
T_{I_{\omega}}\cap F_{\sigma}\cap G_{\delta}\not\subset T^{\prime\prime}_{I_{\omega}}.
$$