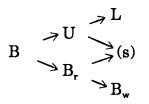
Jack B. Brown, Division of Mathematics, Parker Hall Auburn University, AL, 36849-5310

Differentiable-, Continuous-, and Derivative-Restrictions

of Measurable Functions

"Measurability" means measurability with respect to one of the σ -algebras:



where B = the Borel sets, U = the universally measurable sets, L = the Lebesgue measurable sets, B_r represents the sets with the Baire property (restricted sense), B_w represents the sets with the Baire property (wide sense).

The best known theorem of the type we are interested in is the following:

THEOREM 1: If $f : \mathbb{R} \to \mathbb{R}$ is L-measurable, then

- 1) for every $\varepsilon > 0$, there exists M with $\lambda(M^c) < \varepsilon$ such that f | M is continuous [7],
- 2) there exists M with $\lambda(M^c) = 0$ and a continuous (a.e. differentiable) F : R \rightarrow R such that $f \mid M = F' \mid M$ [8],
- 3) there exists a perfect set P such that f|P
 - i) is monotonic [5],
 - ii) is C⁻ (relative to P) [6]
 - iii) = g | P for some $C^1 g : R \to R$ [1].

THEOREM 2: If $f : \mathbb{R} \to \mathbb{R}$ is \mathbb{B}_w -measurable, then

- 1) there exists a co-FC set M such that f | M is continuous [9],
- 2) there exists a smaller co-FC set M and a D^1 function F such that f|M = F'|M,
- 3) there exists a perfect set P such that f|P
 - i) is monotonic [5],
 - ii) is "D¹" (relative to P) [4],
 - iii) = f | P for some "C¹" g : $\mathbb{R} \to \mathbb{R}$ [2].

THEOREM 3: If $f : \mathbb{R} \to \mathbb{R}$ is (s)-measurable, then

- 1) there exists a perfectly dense subset M of R (every open subset of R contains a perfect subset of M) such that f | M is continuous [3],
- 2) there exists a smaller perfectly dense subset M of R and a D^1 function $F : R \to R$ such that f | M = F' | M,
- 3) $\{\text{same as 3}\}$ of Theorem 2 $\}$.

We discuss in some detail the sharpness of each of these results. The proofs of some of the new results rely heavily on the theorems of [10].

REFERENCES

- S. Agronsky, A. M. Bruckner, M. Laczkovich, and D. Preiss, Convexity conditions and intersections with smooth functions, Trans. Amer. Math. Soc. 289 (1985), 659-677.
- [2] J. B. Brown, Differentiable restrictions of real functions, Proc. Amer. Math. Soc. 108 (1990), 391-398.
- [3] J. B. Brown and K. Prikry, Variations on Lusin's theorem, Trans. Amer. Math. Soc. 302 (1987), 77-86.
- [4] A. M. Bruckner, J. G. Ceder, and M. L. Weiss, On the differentiability structure of real functions, Trans. Amer. Math. Soc. 142 (1969), 1-13.
- [5] F. Filipczak, Sur les fonctions continues relativement monotones, Fund. Math. LII (1963), 60-68.
- [6] M. Laczkovich, Differentiable restrictions of continuous functions, Acta Math. Hungar. 44 (1984), 355-360.
- [7] N. Luzin, Sur les propriétés des fonctions mesurables, Comp. Rend. Acad. Sci. Paris 154 (1912), 1688-1690.
- [8] _____, Sur la recherche des fonctions primitives, Comp. Rend Acad. Sci. Paris 162 (1916), 975-978.
- [9] O. Nikodym, Sur la condition de Baire, Bull. Acad. Polon. (1929), 591.
- [10] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions, and derivatives, Acta Math. Hungar. 25, (1974), 189-212.