J. Ceder, Mathematics Dept., UCSB, Santa Barbara, CA 93106

Some results and problems about ω -limit sets

In [ABCP] it was proven that a nonvoid closed subset F of I = [0, 1] is an ω -limit set $\omega(x_0, f)$ for some continuous $f: I \to I$ iff F is nowhere dense or a union of finitely many nondegenerate closed intervals. In the proof it turned out that the limit points of F were fixed points of f in the case the isolated points of F were dense in F. What, then, is a characterization of the set of fixed points for a continuous function f realizing a given F as one of its ω -limit sets? If F consists of more than one interval f clearly has no fixed points in F. The following results handle the remaining cases.

THEOREM 1 [AC3]. The set K is the set of fixed points for some f realizing I as an ω -limit set iff K is a nonvoid nowhere dense closed subset of I different from $\{0,1\},\{0\}$ and $\{1\}$.

THEOREM 2 [C]. Suppose M is a nonvoid closed nowhere dense subset of I and $K \subseteq M$. Then, M is an ω -limit set for some f having K as its set of fixed points in M iff K is closed and nowhere dense in M and only one of the following hold

- (1) $K = \phi$ and there is more than one point of highest order in M
- (2) $K \neq \phi$, M K is countable and it is not the case that ρ has an absolute maximum on M K occuring only at one point
- (3) $K \neq \phi$ and M K is uncountable

The order $\rho(x)$ at a point x is the smallest α such that $x \in D_{\alpha}(M)$. For $\alpha \leq \omega$, we define $D_{\alpha}(A)$ as follows: $D_0(A) = A$, $D_{\alpha+1} = D(D_{\alpha}(A))$ and $D_{\lambda}(A) = \bigcap \{D_{\alpha}(A) : \alpha < \lambda\}$ when λ is a limit ordinal where D(B) is the set of limit points of B.

In [AC1] the study of compact ω -limit sets in E^k was initiated. One unresolved problem is the analogous one of how to characterize the fixed points of continuous functions realizing a given compact planar set as one of its ω -limit sets. Another more basic problem is characterizing those compact sets in E^k which can be ω -limit sets for continuous functions from E^k into E^k .

We know (1) [AC1] each nonvoid continuum in E^k with empty interior is an ω -limit set and (2) [AC2] each nonvoid locally connected continuum in E^k is an ω -limit set. These results and several examples suggest the following

<u>Conjecture</u> 1 A nonvoid continuum in E^k is an ω -limit set iff it has void interior or is locally (or arcwise) connected.

<u>Conjecture</u> 2 A nonvoid compact set M in E^k with finitely many components M_1, \ldots, M_n is an ω -limit set iff M_1 is an ω -limit set and there exists a continuous $f: M \to M$ such that $f(M_i) = M_{i+1} \pmod{n}$.

As far as compact sets with infinitely many components goes we know that any ω -limit set with infinitely many components has empty interior and [AC1] any totally disconnected compact set in E^k is an ω -limit set.

The following conjecture is true in E^1 [BS] and seems reasonable in general

<u>Conjecture</u> 3 A compact set M in E^k with infinitely many components is an ω -limit set iff there exists finitely many nowhere dense components K_1, \ldots, K_n and a sequence of mutually disjoint nowhere dense compact subsets $\{C_i\}_{i=1}^{\infty}$ of M such that $\bigcup_{i=1}^{\infty} C_i = M - \bigcup_{i=1}^{n} K_i$ and there exists a continuous $f: M \to M$ such that $f(C_{i+1}) = C_i$ and $f(K_i) = K_{i+1} \pmod{n}$ for each i.

We say that $\omega(x_0, f)$ is <u>orbit-enclosing</u> if $\omega(x_0, f)$ contains a tail of $\{f^n(x_0)\}_{n=0}^{\infty}$. If $\omega(x_0, f)$ has nonvoid interior it must be orbit enclosing. Another unsolved problem is how to characterize the orbit enclosing compact ω -limit sets. In this respect we offer

<u>Conjecture</u> 4 A nonvoid continuum in E^k is an orbit enclosing ω -limit set iff it is arcwise connected.

References

- 1. [ABCP] S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of ω -limit sets for continuous functions, Real Analysis Exchange (to appear).
- 2. [AC1] S. J. Agronsky and J. G. Ceder, What sets can be ω -limit sets in E^n ?, submitted.
- 3. [AC2] S. J. Agronsky and J. G. Ceder, Peano subspaces of E^k are ω -limit sets, In preparation.
- 4. [AC3] S. J. Agronsky and J. G. Ceder, On fixed points for nomadic functions, In preparation.
- 5. [BS] A. M. Bruckner and J. Smital, The structure of ω -limit sets for continuous maps of the interval.
- 6. [C] J. G. Ceder, On the fixed points in an ω -limit set, submitted.