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 Some results and problems about u;-limit sets

 In [ABCP] it was proven that a nonvoid closed subset F of I = [0, 1] is an u;-limit set
 u)(xo, f) for some continuous / : I - ► I iff F is nowhere dense or a union of finitely many
 nondegenerate closed intervals. In the proof it turned out that the limit points of F were
 fixed points of / in the case the isolated points of F were dense in F. What, then, is a
 characterization of the set of fixed points for a continuous function / realizing a given F
 as one of its u; -limit sets? If F consists of more than one interval / clearly has no fixed
 points in F. The following results handle the remaining cases.

 THEOREM 1 [AC3]. The set K is the set of fixed points for some f realizing I as an
 co -limit set iff K is a nonvoid nowhere dense closed subset of I different from {0,1}, {0}
 and {1}.

 Theorem 2 [C]. Suppose M is a nonvoid closed nowhere dense subset of I and K Ç M.
 Then, M is an u; -limit set for some f having K as its set of fixed points in M iff K is
 closed and nowhere dense in M and only one of the following hold

 (1) K = <f> and there is more than one point of highest order in M
 (2) K ^ 4>, M - K is countable and it is not the case that p has an absolute maximum

 on M - K occurìng only at one point
 (3) K ^ <f> and M - K is uncountable

 The order p(x) at a point x is the smallest a such that x € Da(M). For a < u>, we define
 Da(A ) as follows: Dq(A) = A, Da+ 1 = D(Da(A)) and D'(A) = p|{JDa(A) : a < A} when
 A is a limit ordinal where D(B ) is the set of limit points of B.

 In [ACl] the study of compact w-limit sets in Ek was initiated. One unresolved problem
 is the analogous one of how to characterize the fixed points of continuous functions realizing
 a given compact planar set as one of its w-limit sets. Another more basic problem is
 characterizing those compact sets in Ek which can be w-limit sets for continuous functions
 from Ek into Ek .

 We know (1) [ACl] each nonvoid continuum in Ek with empty interior is an u)-limit set
 and (2) [AC2] each nonvoid locally connected continuum in Ek is an u> -limit set. These
 results and several examples suggest the following

 Conjecture 1 A nonvoid continuum in Ek is an u> -limit set iff it has void interior or is
 locally (or arcwise) connected.

 Conjecture 2 A nonvoid compact set M in Ek with finitely many components Mi, . . . , Mn
 is an u>- limit set iff Mi is an u -limit set and there exists a continuous f : M -* M such
 that f(Mi) = Mi+i (mod n).

 As far as compact sets with infinitely many components goes we know that any u -limit
 set with infinitely many components has empty interior and [ACl] any totally disconnected
 compact set in Ek is an u-limit set.
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 The following conjecture is true in E 1 [BS] and seems reasonable in general

 Conjecture S A compact set M in Ek with infinitely many components is an u -limit set
 iff there exists finitely many nowhere dense components K', Kn and, a sequence of
 mutually disjoint nowhere dense compact subsets {Ci}^x of M such that Ci - M -
 Ur=i K* an¿ there exists a continuous f : M -* M such that /(C,+ 1) = C,- and f(Ki ) =

 (mod n) for each i.

 We say that u(xo,f) is orbit-enclosing if u;(xo,/) contains a tail of {/n(io)}^o- ^
 u?(xo, /) has nonvoid interior it must be orbit enclosing. Another unsolved problem is how
 to characterize the orbit enclosing compact u;-limit sets. In this respect we offer

 Conjecture 4 A nonvoid continuum in Ek is an orbit enclosing u> -limit set iff it is arcwise
 connected.
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