A.M. Bruckner, University of California, Santa Barbara Santa Barbara California, 93106

Three Methods of Constructing w-limit Sets

Let f be a function mapping I = [0, 1] into itself. A set $K \subset I$ is called an ω -limit set for f if there exists $x \in I$ such that K is the cluster set of the sequence $\{f^n(x)\}$. (Here, as usual, $f^1 = f$ and $f^{n+1} - f \circ f^n$ for $n = 1, 2, 3, \ldots$). We write $\omega_f(x) = K$ to indicate K is the ω -limit set of x under f.

Let $\mathfrak X$ be a nonempty family of compact subsets of I = [0, 1], and let $\mathfrak F$ be a family of functions from I to I. For $f \in \mathfrak F$, let $\Lambda(f)$ denote the class of ω -limit sets for f. We discuss variants of the following question. Given $\mathfrak X$ and $\mathfrak F$, does there exist $f \in \mathfrak F$ such that $\mathfrak X \subset \Lambda(f)$? We pay particular attention to subfamilies $\mathfrak F$ of $\mathfrak B\mathfrak B_1$.

We consider three methods of analysis:

1. Arithmetic.

Here one constructs functions whose iterative patterns are built into the, say, ternary representations for numbers in I. This method is useful for constructing examples that illustrate that large families \Re can be incorporated into $\Lambda(f)$ for some $f \in \Im$

 $^{^{\}star}$ A more detailed summary of this talk is included in the Inroads section of this issue.

2. Interval-orbits.

Here one constructs a nested sequence $\{I_n\}$ of compact intervals. The orbit of I_n approximates the desired ω -limit set K for a finite number i_n of iterates. As n increases, the approximation improves in two ways: the error tolerances decrease to 0, and the numbers i_n approach infinity. The point $\{x\} = \bigcap I_n$ has K as ω -limit set. Using this approach one can show that there exists a function f having only one point of discontinuity and possessing the Darboux property such that $\Lambda(f)$ contains a homeomorphic copy of each nonempty nowhere dense compact set as well as copies of those sets that are finite unions of closed intervals.

3. Specifying Orbits.

We determine conditions on a sequence $S = \{x_n\}$ or on a countable collection A of sequences that allow each $S \in A$ to be the orbit of some $x(S) \in I$ for some $f \in S$. Given a countable family $K = \{K_1, K_2, \ldots\}$ one tries to choose a countable collection A of sequences $\{S_1, S_2, \ldots\}$ such that the sequence S_n has the set K_n as cluster set and such that the collection A allows the existence of a function A that realizes each sequence S_n as the orbit of some point. This method has been useful, for example, in showing that a given nonempty nowhere dense set K is an ω -limit set for some $f \in S$. For $S = S_n \cap S_n$, this method readily reveals that any nonempty compact K is an ω -limit set for some $f \in S_n \cap S_n$. It is also helpful in identifying conditions under which a countable family K is contained in A(f) for some $f \in S_n \cap S_n$.