W.F. Pfeffer, Department of Mathematics, University of California, Davis, CA 95616.

AN INTEGRAL IN GEOMETRIC MEASURE THEORY

Throughout, $m \geq 1$ is a fixed integer. The set of all real numbers is denoted by \mathbf{R}, and the m-fold Cartesian product of \mathbf{R} is denoted by \mathbf{R}^{m}. In \mathbf{R}^{m} we shall consider the m-dimensional Lebesgue measure λ and the ($m-1$)-dimensional Hausdorff measure \mathcal{H}. The use of the Lebesgue integral (with respect to λ or \mathcal{H}) is indicated by the symbol $(L) \int$; the symbol \int is reserved for the new integral defined below.

The essential closure of a set $E \subset \mathbf{R}^{m}$, denoted by E^{*}, is the set of all $x \in \mathbf{R}^{m}$ at which the upper density of E with respect to λ is positive; the essential boundary of E is the set $\partial^{*} E=E^{*} \cap\left(\mathbf{R}^{m}-E\right)^{*}$. A $B V$ set is a bounded subset of \mathbf{R}^{m} for which $\mathcal{H}\left(\partial^{*} A\right)<+\infty$. According to $[\mathbf{F}$, Theorem 4.5.11], the family of all $B V$ sets coincides with the family of all bounded λ-measurable subsets of \mathbf{R}^{m} whose De Giorgi perimeters defined in [M-M, Chapter 2] are finite; moreover, the perimeter of a $B V$ set A equals to $\mathcal{H}\left(\partial^{*} A\right)$ (see [\mathbf{V}, Section 4]). Denoting by $d(A)$ and $\|A\|$, respectively, the diameter and perimeter of a $B V$ set A, we define the regularity of A as the number

$$
r(A)= \begin{cases}\frac{\lambda(A)}{d(A)\|A\|} & \text { if } d(A)\|A\|>0 \\ 0 & \text { otherwise }\end{cases}
$$

Using the isoperimetric inequality, it is easy to relate $r(A)$ to the usual concept of regularity connected with Vitali's covering theorem (cf. [S, Chapter IV, Section 2]).

A partition in a $B V$ set A is a collection (possibly empty) $P=\left\{\left(A_{1}, x_{1}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ where A_{1}, \ldots, A_{p} are disjoint $B V$ subsets of A and $x_{i} \in A_{i}$ for $i=1, \ldots, p$. When $r\left(A_{i}\right)>\varepsilon$ for an $\varepsilon>0$ and $i=1, \ldots, p$, we say that the partition P is ε-regular. If δ is a nonnegative function on A^{*} and $d\left(A_{i}\right)<\delta\left(x_{i}\right)$ for $i=1, \ldots, p$, then P is called δ-fine. Finally, given an $\varepsilon>0$ and a sequence $\eta=\left\{\eta_{j}\right\}$ of positive numbers, we say that P is (ε, η)-approximating whenever there are disjoint $B V$ sets B_{1}, \ldots, B_{k} such that $A-\bigcup_{i=1}^{p} A_{i}=\bigcup_{j=1}^{k} B_{j}$ and for $j=1, \ldots, k$, we have $\left\|B_{j}\right\|<1 / \varepsilon$ and $\lambda\left(B_{j}\right)<\eta_{j}$.

Note. If a partition $P=\left\{\left(A_{1}, x_{1}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ in a $B V$ set A is δ-fine, a two-fold limitation is implied: the points x_{1}, \ldots, x_{p} lie outside the set $\left\{x \in A^{*}: \delta(x)=0\right\}$ and the diameters of the sets A_{i} are bounded by $\delta\left(x_{i}\right)$ for $i=1, \ldots, p$. We shall use "small" functions δ which vanish on "small" sets in terms of the measure \mathcal{H}. In general, $\bigcup_{i=1}^{p} A_{i}$ is a proper subset of A. If P is (ε, η)-approximating, however, then $\bigcup_{i=1}^{p} A_{i}$ fills "most" of A with respect to the measure λ, as we shall employ sequences η of "small" numbers.

A gage in a $B V$ set A is a nonnegative function δ on A^{*} such that the set $\left\{x \in A^{*}\right.$: $\delta(x)=0\}$ is a countable union of sets whose \mathcal{H} measure is finite. For any gage δ in a $B V$ set A, any sequence η of positive numbers, and any sufficiently small $\varepsilon>0$, the existence of δ-fine ε-regular and (ε, η)-approximating partitions in A was established in [\mathbf{P}_{2}].

Definition. Let A be a $B V$ set. A function $f: A^{*} \rightarrow \mathbf{R}$ is called integrable in A if there is a number α satisfying the following condition: given $\varepsilon>0$, there is a sequence η of positive numbers and a gage δ in A such that

$$
\left|\sum_{i=1}^{p} f\left(x_{i}\right) \lambda\left(A_{i}\right)-\alpha\right|<\varepsilon
$$

for each partition $\left\{\left(A_{1}, x_{1}\right), \ldots,\left(A_{p}, x_{p}\right)\right\}$ in A which is simultaneously ε-regular, δ-fine, and (ε, η)-approximating. The number α, necessarily unique when it exists, is called the integral of f over A, denoted by $\int_{A} f$.

Let A be a $B V$ set and let $\mathcal{I}(A)$ denote the set of all integrable functions in A. The following statements have been proved in $\left[\mathbf{P}_{1}\right]$, except for statement (7) proved in $[B]$.
(1) The integrability of a function $f: A^{*} \rightarrow \mathbf{R}$ in A as well as the value of $\int_{A} f$ depends only on f restricted to $E \subset A$ with $\lambda(A-E)=0$.
(2) Linearity. The family $\mathcal{I}(A)$ is a linear space, and the map $f \mapsto \int_{A} f$ is a nonnegative linear functional on $\mathcal{I}(A)$.
(3) Additivity. If $f \in \mathcal{I}(A)$ then f is integrable in B for each $B V$ set $B \subset A$. The $\operatorname{map} \int f: B \mapsto \int_{B} f$, called the indefinite integral of f in A, is an additive function on $B V$ subsets of A.
(4) Continuity. If $f \in \mathcal{I}(A)$ then $\int f$ is continuous in the following sense: given $\varepsilon>0$, there is a $\kappa>0$ such that $\left|\int_{B} f\right|<\varepsilon$ for each $B V$ set $B \subset A$ for which $\|B\|<1 / \varepsilon$ and $\lambda(B)<\kappa$.
(5) λ-almost everywhere in A, each $f \in \mathcal{I}(A)$ is a derivate of $\int f$. In particular, each $f \in \mathcal{I}(A)$ is λ-measurable.
(6) A function f on A is Lebesgue integrable in A with respect to λ if and only if both f and $|f|$ are integrable in A, in which case $\int_{A} f=(L) \int_{A} f d \lambda$.
(7) Nontriviality. If $m \geq 2$ and the topological interior of A is nonempty, then there is a function $f \in \mathcal{I}(A)$ which is not Lebesgue integrable (with respect to λ) on any nonempty open subset of A.
(8) The Gauss-Green theorem. Let $T \subset A^{*}$ be a countable union of sets whose \mathcal{H} measure is finite, and let v be a vector field defined in an open set containing the topological closure of A. Suppose that v is continuous in the topological closure of A and that

$$
\limsup _{y \rightarrow x} \frac{|v(y)-v(x)|}{|y-x|}<+\infty
$$

for each $x \in A^{*}-T$. Then $\operatorname{div} v$, defined λ-almost everywhere in A by Stepanoff's theorem ($[\mathbf{F}$, Theorem 3.1.9]), is integrable in A and

$$
\int_{A} \operatorname{div} v=(L) \int_{\partial^{*} A} v \cdot n_{A} d \mathcal{H}
$$

where n_{A} is the Federer exterior normal of A defined in [\mathbf{F}, Section 4.5.5].
(9) Coordinate invariance. Let $\Phi: A \rightarrow \mathbf{R}^{\boldsymbol{m}}$ be a lipeomorphism (i.e., a biLipschitzian map) and let det Φ be the determinant of the differential of Φ (defined
λ-almost everywhere in A). Then $\Phi(A)$ is a $B V$ set, and for each function f integrable in $\Phi(A)$ the function $f \circ \Phi \cdot|\operatorname{det} \Phi|$ is integrable in A and

$$
\int_{A} f \circ \Phi \cdot|\operatorname{det} \Phi|=\int_{\Phi(A)} f .
$$

References

[B] Z. Buczolich, A v-integrable function which is not Lebesgue integrable on any portion of the unit square, Proc. American Math. Soc., in press.
[F] H. Federer, "Geometric Measure Theory," Springer-Verlag, New York, 1969.
[M-M] U. Massari and M. Miranda, "Minimal Surfaces in Codimension One," North-Holland, Amsterdam, 1984.
[\mathbf{P}_{1}] W.F. Pfeffer, The Gauss-Green theorem, Advances Math., in press.
$\left[\mathbf{P}_{2}\right]$ _, A Riemann type definition of a variational integral, Proc. American Math. Soc., in press.
[S] S. Saks, "Theory of the Integral," Dover, New York, 1964.
[V] A.I. Volpert, The spaces BV and quasilinear equations, Mathematics USSR-Sbornik 2 (1967), 225-267.

