F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207 U.S.A.

DINI DERIVATES OF AN UNUSUAL FUNCTION

Let f be a real valued function on [0,1] and let $D^+f(x)$, $D_+f(x)$, $D_-f(x)$, $D_-f(x)$ denote the usual four Dini derivates of f at x. From [1] we see that f is nondecreasing on [0,1] if f is continuous on [0,1] and $D^+f(x) \ge 0$ for $0 \le x \le 1$. However some nondecreasing functions are discontinuous at countably many points. One wonders if the result cited above will work when f is allowed to be discontinuous at countably many points in [0,1]. Evidently not, for consider the characteristic function of (4,4) for example. For a long while the author conjectured that f must be nondecreasing on [0,1] if f is continuous at all but possibly countably many points in [0,1] and $D^+f(x) \ge 0$ for $0 \le x \le 1$ and $D^-f(x) \ge 0$ for $0 \le x \le 1$. This is a persuasive conjecture because f surely must be nondecreasing when there are only finitely many points of discontinuity. In this note we prove the conjecture false. Indeed we prove:

Theorem 1. There exists a function f on [0,1], not of bounded variation, satisfying $D^+f(x) \ge 0 \ge D_+f(x)$ for $0 \le x \le 1$ and $D^-f(x) \ge 0 \ge$ $D_-f(x)$ for $0 \le x \le 1$, such that f is continuous at all but at most countably many points.

We can achieve montonicity by increasing the hypothesis slightly.

Proposition 1. A function f is nondecreasing on [0,1] if and only if (i) and (ii) hold:

(i) f is continuous at all but a most countably many points and

$$\sum_{x} (\lim_{h \downarrow 0} \sup\{f(t): x-h < t < x+h\} - \lim_{h \downarrow 0} \inf\{f(t): x-h < t < x+h\}) < \infty$$

where the sum is taken over all the points of discontinuity of f,

(ii) the upper Dini derivates of f satisfy $D^{-}f(x) \ge 0$ for $0 \le x \le 1$ and $D^{+}f(x) \ge 0$ for $0 \le x \le 1$.

The proof of Proposition 1 is almost routine, so we will only sketch the proof here.

Proof of Theorem 1. We will construct the function f.

Let g be a function defined on a doubleton set $\{a,b\}$, a < b. For each positive integer n, define the mutually disjoint intervals

$$I_{n} = [\frac{1}{(b-a)(1-(4n)^{-1})} + \frac{1}{(b+a)}, \frac{1}{(b-a)(1-(4n+1)^{-1})} + \frac{1}{(b+a)}],$$

$$I_{-n} = [\frac{1}{(b-a)((4n+1)^{-1}-1)} + \frac{1}{(b+a)}, \frac{1}{(b-a)((4n)^{-1}-1)} + \frac{1}{(b+a)}].$$

Also put

$$I_{-} = [-\frac{1}{2}(b-a) + \frac{1}{2}(b+a), \frac{1}{2}(b-a) + \frac{1}{2}(b+a)]$$

Define the even extension of g to be the function \overline{g} on $\{a,b\} \cup I_0$ such that $\overline{g}(a) = g(a), \overline{g}(b) = g(b)$, and $\overline{g} = \frac{1}{2}(g(a) + g(b))$ on I_0 . Define the odd extension of g to be the function \overline{g} on $\{a,b\} \cup \bigcup_{j=-\infty}^{\infty} I_j$ such that $\overline{g}(a) = g(a), \overline{g}(b) = g(b), \overline{g} = g(a)$ on I_j for j odd, and $\overline{g} = g(b)$ on I_j for j even.

More generally, if g is any function defined on the set E, let the even (odd) extension of g be the common extension of g together with the even (odd) extensions of all the restrictions of g to doubleton sets $\{a,b\}$ (if any) where a and b are consecutive points in E.

Now put $g_0(0) = 0$ and $g_0(1) = 1$. Let g_1 be the odd extension of g_0, g_2 the even extension of g_1, g_3 the odd extension of g_2 , etc. In general, g_j is the even (odd) extension of g_{j-1} if j is even (odd). Let E_j denote the domain of g_j . Let g be the common extension of all the g_j on $\bigcup_{j=0}^{\infty} E_j = E$. Then E is dense in [0,1].

Note that (and g_{2n}) differ on consecutive intervals of g2n+1 $E_{2n+1}(E_{2n})$ exactly half as much as differs on consecutive intervals g2n-1 of E_{2n-1} . Thus if $x \in [0,1] \setminus E$, then lim g(t)exists. Define t→x, t∈E g(t) for $x \in [0,1] \setminus E$, and f(x) = g(x) for $f(x) = \lim_{x \to \infty} f(x)$ **χ ε Ε.** Then $t \rightarrow x$. $t \in E$ f is defined on [0,1] and the only points at which f can be discontinuous are the endpoints of the component intervals of E. Thus f is continuous at all but countably many points. Moreover, from the definition of g_1 we see that f is not of bounded variation on [0,1].

It remains only to prove the inequalities for the Dini derivates of f. First let x be a right endpoint of some component interval of E_j for j even. From the definition of g_{j+1} , it follows that x is a right accumulation point of the set $f^{-1}f(x)$, so $D^+f(x) \ge 0 \ge D_+f(x)$. Likewise $D^+f(0) \ge 0 \ge D_+f(0)$. Next let $x \in [0,1] \setminus E$. Say x lies between consecutive intervals I and J of E_j (j even, I < J). Then f(x) lies between f(I) and f(J). We see from the definition of g_{j+1} that f assumes the values f(I) and f(J) at some points between x and J. Hence $D^+f(x) \ge 0 \ge D_+f(x)$. Finally $D^+f(x) \ge 0 \ge D_+f(x)$ for all x satisfying $0 \le x < 1$. The other inequality is proved analogously. \Box

It can also be shown in our construction that f is either left or right continuous (or both) at each point of (0,1). Moreover, f has zero derivative in the interior of each interval in E. Thus f is almost everywhere differentiable on (0,1).

Sketch of the proof of Proposition 1. The necessity of (i) and (ii) is clear, so we prove sufficiency. Assume (i) and (ii). Let $x_1, x_2, x_3, ..., x_n, ...$ be the points of discontinuity of f enumerated and let

 $u_{m} = \lim_{h \to 0} \sup\{f(t): x_{m} - h < t < x_{m} + h\} - \lim_{h \to 0} \inf\{f(t): x_{m} - h < t < x_{m} + h\}$ for each $m \ge 1$. Put

$$g_n(x) = \sum_{j>n, x_j \le x} u_j - \sum_{j>n, x_j \ge x} u_j$$

for $0 \le x \le 1$ and any positive integer n, and put $f_n(x) = f(x) + g_n(x)$. Then f_n converges uniformly to f and it suffices to prove that each f_n is nondecreasing on [0,1].

Let (a,b) be an open subinterval of [0,1] that contains no point $x_1,...,x_n$. It is not difficult to show that

 $\lim \sup_{h \searrow 0} f_n(x-h) \leq f_n(x) \leq \lim \sup_{h \searrow 0} f_n(x+h)$

for any x in (a,b). Moreover g_n is nondecreasing so $D^+f_n \ge D^+f \ge 0$ on (a,b). Finally, f_n is nondecreasing on (a,b) by [1].

Thus it follows that [0,1] can be partitioned into n+1 subintervals such that f_n is nondecreasing on the interior of each subinterval. From $D^+f \ge 0$ and $D^-f \ge 0$, it can be shown that f_n is nondecreasing on [0,1].

REFERENCE

1. S. Saks, Theory of the Integral, Revised Second Edition, Dover Publications, New York, 1964, Theorem (7.2), p. 204.

Received June 16, 1988