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 DINI DERIVATES OP AN UNUSUAL FUNCTION

 Let f be a real valued function on [0,1] and let D+f(x), D+f(x), D~f(x),
 D_f(x) denote the usual four Dini deriva tes of f at x. From [1] we see

 that f is nondecreasing on [0,1] if f is continuous on [0,1] and

 D+f(x) ^ 0 for 0 < x < 1. However some nondecreasing functions are
 discontinuous at countably many points. One wonders if the result cited

 above will work when f is allowed to be discontinuous at countably many

 points in [0,1]. Evidently not, for consider the characteristic function of

 (*,%) for example. For a long while the author conjectured that f must be

 nondecreasing on [0,1] if f is continuous at all but possibly countably

 many points in [0,1] and D+f(x) * 0 for 0 * x < 1 and D~f(x) * 0 for

 0 < x * 1. This is a persuasive conjecture because f surely must be

 nondecreasing when there are only finitely many points of discontinuity. In

 this note we prove the conjecture false. Indeed we prove:

 Theorem 1. There exists a function f on [0,1], not of bounded

 variation, satisfying D+f(x) * 0 * D+f(x) for 0 < x < 1 and D~f(x) * 0 *
 D_f(x) for 0 < x * 1, such that f is continuous at all but at most

 countably many points.

 We can achieve montonicity by increasing the hypothesis slightly.

 Proposition I. A function f is nondecreasing on [0,1] if and only if (i)

 and (ii) hold:

 (i) f is continuous at all but a most countably many points and

 Ex (lim^Q sup{f(t): x-h<t<x+h} - lim^Q inf{f(t): x-h<t<x+h}) < ®

 where the sum is taken over all the points of discontinuity of f,

 (ii) the upper Dini derivates of f satisfy D~f(x) * 0 for 0 < x * . 1

 and D+f(x) * 0 for 0 * x < 1.

 The proof of Proposition 1 is almost routine, so we will only sketch the

 proof here.
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 Proof of Theorem 1. We will construct the function f.

 Let g be a function defined on a doubleton set {a,b}, a < b. For each

 positive integer n, define the mutually disjoint intervals

 I = [*(b-a)(l-(4n)~l) + *(b+a), %(b-a) (l-(4n+l)_1 ) + *(b+a)] ,

 I = [*(b-a) ( (4n+l)_1-l) + %(b+a), Ü(b-a) ( (4n)_1-l) + %(b+a)] .
 - n

 Also put
 I = [-%(b-a) + %(b+a), X(b-a) + %(b+a)] .

 o

 Define the even extension of g to be the function ģ on {a,b} u I0 such

 that g(a) = g(a), g(b) = g(b) , and g = V>(g(a) + g(b)) on I0- Define the
 __ oo

 odd extension of g to be the function __ g on {a,b} u u ® Ij such that J ®

 g(a) = g( a), g(b) = g(b), g = g( a) on Ij for j odd, and g = g(b) on Ij
 for j even.

 More generally, if g is any function defined on the set E, let the even

 (odd) extension of g be the common extension of g together with the even

 (odd) extensions of all the restrictions of g to doubleton sets (a,b) (if

 any) where a and b are consecutive points in E.

 Now put go(0) = 0 and g0(l) = 1« Let gt be the odd extension of

 got gì the even extension of glt g3 the odd extension of g2, etc. In

 general, gj is the even (odd) extension of gj_x if j is even (odd). Let
 Ej denote the domain of gj. Let g be the common extension of all the gj

 on Ej = E. Then E is dense in [0,1].

 Note that gan+i (and gan) differ on consecutive intervals of

 E2n+i (E^n) exactly half as much as g2n-i differs on consecutive intervals

 of E2n-i> Thus if xc [0,1]'E, then lim g(t) exists. Define
 t-»x, teE

 f(x) = lim í(t) for X e [0,1]'E, and f(x) = g(x) for x € E. Then
 t-»x, tcE

 f is defined on [0,1] and the only points at which f can be discontinuous

 are the endpoints of the component intervals of E. Thus f is continuous at

 all but countably many points. Moreover, from the definition of gx we see

 that f is not of bornded variation on [0,1].

 It remains only to prove the inequalities for the Dini dérivâtes of f.

 First let x be a right endpoint of some component interval of Ej for j
 even. From the definition of gj+i, it follows that x is a right accumulation
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 point of the set f~'f(x), so D+f(x) * 0 * D+f(x). Likewise D+f(0) * 0 *
 D+f(0). Next let x € [0,1]'E. Say x lies between consecutive intervals I

 and J of Ej (j even, I < J). Then f(x) lies between f(I) and f(J).
 We see from the definition of gj+i that f assumes the values f(I) and
 f(J) at some points between x and J. Hence D+f(x) * 0 * D+f(x). Finally
 D+f(x) i 0 » D+f(x) for all x satisfying 0 < x < 1. The other inequality is
 proved analogously. □

 It can also be shown in our construction that f is either left or right

 continuous (or both) at each point of (0,1). Moreover, f has zero

 derivative in the interior of each interval in E. Thus f is almost

 everywhere differentiate on (0,1).

 Sketch of the proof of Proposition 1. The necessity of (i) and (ii) is

 clear, so we prove sufficiency. Assume (i) and (ii). Let x», x2, x3, ..., xn, ...
 be the points of discontinuity of f enumerated and let

 um = li,DhV0 5 Vh<t<Vh} " lilDhV0 inf<f(t): Vh<t<Vh}
 for each m * 1. Put

 Ãn(x) - Ej>nt xj<x Uj ^j>n, xj>x Uj

 for 0 * x * 1 and any positive integer n, and put fn(*) = f(x) + 2n(x)>

 Then fn converges uniformly to f and it suffices to prove that each ^n
 is nondecreasing on [0,1].

 Let (a,b) be an open subinterval of [0,1] that contains no point

 xt,...,xn« It is not difficult to show that

 lim suPhiř0 fn(x"h) é fR(x) * lim sup^ fn(x+h)

 for any x in (a,b). Moreover gn is nondecreasing so D+fn * D+f * 0 on
 (a,b). Finally, fn is nondecreasing on (a,b) by [1].

 Thus it follows that [0,1] can be partitioned into n+1 subintervals

 such that fn is nondecreasing on the interior of each subinterval. From

 D+f ^ 0 and D~f * 0, it can be shown that fn is nondecreasir % on [0,1].
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