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 Ans w ers to three questions of Foran

 In [3] James Foran asked 12 questions. Here we e-ive answers

 to the following three:

 Question 7> (C3j»P*99) How may the functions of the form fog,

 where f is an absolutely continuous homeomorphism and g is

 d if ferentiable, be characterized?

 Question 6. ([3]»p.98) How can the class of functions of the

 form fog, where f is a homeomorphism and g satisfies Banach' s

 condition T2 and is continuous, be characterized?
 Question 1. ( [3], p. 92) Can every ACG and continuous function

 be written as f<?g, where f is differentiable and ? is monotone and

 absolutely continuous?

 Theorem 1, Theorem 2 and Theorem 3 are answers to these three

 questions .

 In what follows all functions ar* supposed to ba defined on

 [0,1] with range in [*0,lj. Let H = {h : h is a homeomorphism which

 maps [0,1] onto Co,lj}; H = [h : h^HOACj; H = [h : h£HfÏAC and
 h-1£ HfiAOj; diff s {f : f is differentiable}; bdiff = (f : f is
 differentiable and f* is bounded L = [f : f is a Lipscbitz
 function]; é = ļf : f is continuous}. For Banach* s conditions (3)

 and T2, for ACG and AC see C^łJ • >Ve need axso the following facts:
 Theorem A. ( [l],p.202) If he H and h'(x) i 0 a. e . then h£ H.

 Observation. In Theorem A we can not give up the condition
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 " b'(x) 4 0 a. e. ". Indeed, there are h£H with b'(i)^0 a.e.

 but b'(x) s O on a set of positive measure. For sucb h, b~^ AO
 and bj^H.

 Tbeorem B. If F£ L tben tbere exists h£ÌTnbdiff sucb tbat
 bcF £ bdiff.

 Proof. Let PC L. By [2], p. 154 tbere ecists h£Hfibdiff with

 b'(x)>0 a.e. and boFCbdiff. Clearly by Theorem A, b£H.

 Theorem C. ( [>],p.237) Igt Ff£ . F£ VBG# (resp. ACG^O ^ ) if
 and only if tbere exists a continuous, increasing function U which

 maps [Ò » lj onto itself (.resp . U is increasing and AC ) sueb thafr

 tbe est cerne derivatives of F witb respect to U are finite a* »ach

 point of Co,lJ ♦ ( Without lo s 3 of generality we may suppose U'Cx)

 >0 a.e., if not we can replace U(x) with U^Cx) = (U(x)+x)/2t so
 by Tbeorem A. UfH (resp. U€ H).)

 Tbeorem D. A function F satisfies a Lipscbitz condition with

 constant M >0 if and only if tbe Pini derivatives of F are bounded

 in absolute value by M,

 Proof. Tbe necessity of this condition is evident. Suppose

 tbat the Dini derivatives of F are bounded in absolute value by M.

 Thenr by R](Lemm* 6«3,p.226), (.F( (xlfx2) )| < M'|x1-x2l , CKxj^x^l
 Since ř is continuous it follows tbat |F(Xļ)-F(x2)| ^ M'!xi~x2l •

 Theorem 1. Let A^ and A^ be two classes of continuous
 functions sucb that HQ (S) and bdiff C ^ £ (S). Then
 c/i#^2 = (S).

 Remark 1. a) Clearly bdiff C LCI AC C ACG^ O (3) and bdiff C

 d iff C ACG^ C (S).

 b) For Á-1 =. H and - d iff we obtain the answer to Question 7.
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 Proof of Theorem 1» By ^l](p.209) it follows that (3) = AC°AC.

 It follows from the proof of Nina Bary 's theorem ( [l] , pp. 20 3-207)

 and Theorem D that the composition of two AC functions can be ones

 whose outer function is increasing and AO with an inverse that is

 a Idpscbitz function, and whose inner function is a Lipschitz

 function. (The statement of the theorem asserts only that the

 outer function be increasing and absolutely continuous and that the

 inner function be absolutely continuous.) Hence (S) = ACaAC = H»L.

 By Theorem B, LCH»bdiff. Since H*H = H and bd iff CL it follows

 that (3) = ?'LCt«i-bdiff = H°bdiffÇH<L = (S). Hence (S) = H ®
 bdiff. Now we prove that H«(3) = (3). Indeed, (3)C^a(S) s H*H*L
 = H°L = (3). We show that (3)«(3) = (S) (this follows also by El],
 pp .214-216) . It is easy to verify that AC°H s AO, Hence (S)Q

 (S)'(S) = R'L'ReL H 'AO 'l -AO = H>AC*AC = H<S) = (3) and (3) =

 Hobdiff C G (SMS) = (S). It follows that s

 Theorem 2. VBG^O € = diff»H and ACG^O € = diffoH.

 Proof. Clearly diffoH C (ACG^fl € )°H C(VBG#H <f )»H = VBG^Hť
 and d iff«»! Q (ACG O € )*H Ç (VBG 0 6 )0(N) = A CG O ř.

 * r ir

 Conversely it is sufficient to show that if f£ € O VBG^ (resp.

 6 H ACG^) then there exists h£ H (resp. H) such that F«h is
 differentiable» L®tr U be defined as in Theorem 0 then FoU~^=Fļ has
 finite extre«« derivatives at each point of [Ò,l] . By [^J(Theorem

 10.5,0.235), on ro,lJ • Hence F^ is differ entiable a.e.
 on [0,1] • Let W = (x : F^ is not dif ferentiable at xj. Then |W| =
 0. Let Z be a G^ -set of measure 0 such that WCzC[o,ll . By [2j,
 p. 126 it follows that there exist h~^6 H and a >0 such that

 (h'1)'(x) = oo . if x€ Z and (h"1)^) > a, if x 6 fc>,ll - Z. By
 Theorem A it follows that h~^€ H". Then h'(x) = 0 for x£ h"^(Z)
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 and h'(x)< 1/a for x£[0,ļ3 - b"^(Z). Following Bruckner ([3j»p.

 126) we obtain tbat (Fļ«b)'(x) = Fļ(b(x))ob' (x) if h(x)j¿ Z and
 (Fļ»b)'(x) s O if b(x)£ Z. Let g = U'^ob then g£ H (resp. H) and
 Fog£ diff .

 Remark 2. a) Tbe first part of Theorem 2 is identical with

 Theorem 1,5 ( [2] ,p. 129) pr oved in another wa:y b? Fleissner and
 F oran; b) Tbe second part of Theorem 2 is tbe answer to Question 1«

 Definition« A continuous function, f satisfies condition Bj on
 [0,1] if tbe set {y : f"^(y) is at most countable J 0 J contains a
 perfect subset for each nondegenerate closed interval JC f([0,]3 )*

 Theorem 5. For continuous functions H«T2 = B^.

 Proof« Let b£ H and f€T2* We may suppose without loss of

 generality tbat f maps [Ò,lJ onto itself. Let F = b»f, B s [y t

 f~^(y) is at most countablej ; B^ s {z : F~^(z) is at most countablej
 Then = b(S). Let J be a closed nondegenerate subinterval of [Ò,lJ

 and let I = b~^(J). Since f€T2 it follows tbat m(S) = m(SDI)« Let
 P be a perfect subset of SOI then h(P) = Q is a perfect subset of

 JHEļ, bence FÇ B^. Conversely, let F6 B^. We may suppos« without
 loss of generality that F maps [Ö,l] onto itself. Let E = [y :

 F~*(y) is at most countable]. Since F£S^, if {lain d- notes an
 enumeration of those subintervals of [o,l] which have rational end-

 p oints *• can obtain a sequence of nowhere dense perfect sets
 00

 such tbat for each n, v^CIqTìS. Let Q » Q^« Clearly QCS and
 n=l

 Q is a c-dense subset of [O lj , of F^-type. By [2] (Lemma 1.7, P.
 129) there exists a bomeomorpbism b of.[0,l] onto itself such tbat

 ®(b(Q)) = 1. Let F^ = b«»F, B^ = h(Ē). Clearly Eļ s ļu F*"^(z) is
 at most countable}. Since m(Bļ) = 1 and F^ maps Lo,ll onto [o,l]

 it follows that F^€ T2«

 246



 Remark 3. Theorem 3 is the answer to Question 6«

 We are indebted to Professor Solomon Marcus for his help in

 preparing this article.
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