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Some remarks on density-continuous functions

1. Introduction
Definition: The density topology on IR consists of all Lebesgue measurable sets E C IR
such that for all z € E, d(z, E) = 1, where d(z, E) = lims—o(1/26)u(E N (z - 6,z + 6)).
The density topology is a Ty} connected refinement of the Euclidean topology (see
e.g. [Tall)).

Definition: If f: IR — IR we say f is density-continuous if f is continuous as a self-map

of IR, when IR is given the density topoiogy.

Several people have considered the properties of such functions. (See [Bru], [Ost 1],
[Ost 2], [Ost 3], [Ost 4], [Nie].) The following questions are asked in [Ost 4]:

1. Are polynomials density-continuous?

2. Does there exist a density-continuous function f such that the functionz — f(z)+z
is not density-continuous?

Here we prove the folowing:

Theorem 1: Real-analytic functions are density-continuous.

Theorem 2: There is a differentiable density-continuous function f: IR — IR such that

f'(0) > 0 and the function z — f(z)+ z is not density-continuous at 0.

2. Proof of theorem 1

Let f: IR — IR be a real-analytic function, and fix zo € IR and a measurable set
E C R such that f(z¢) € E and d(f(z¢), E) = 1. We must show that d(zo, f~1(E)) = 1.

Case 1: f'(zg) # 0, say f'(zo) > 0. In this case the fact that f is C! implies that

it is density-continuous. This follows easily from the results in [Bru] but for the sake of
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completeness we give here the following proof:

Denote by Is the interval (f(zo — 6), f(zo + 6)). Let yo = f(z0). Fix ¢ > 0 and
choose 8§y > 0 such that f' > 0 on (zg — bo,Z9 + b0), for any 6 € (0,89) we have u(E N
L)/ w(Is) 2 1 — e and u(Is) / 26 2 (1 - ©)f'(20), and for any y € Is, we have (f~1)'(y) >
(1= () (vo)-

Then for any 0 < § < &y,

20+ s0+§

BN G —sm+0) =g [ w5 [ xa(s) e
1 J(20+96)
=% Jyesy xs(W)(f7)'(v) dy

-1 f(z0+6)
2 -0 ) [ ey
1

25( )f'( )#(Eﬂf5)
> (1 -#e()If)(fo)(l )f'( )[J(E n I;)
( )3#(E0I5) > (1 - e)S.

#(1s)
Thus d(zo, f~}(E)) = 1.

Case 2: f'(z¢) = 0. Since Lebesgue measure and the density topology are translation
invariant, we may assume that zo = 0 and f(0) = 0. We may also assume that f is not
constant and thus that f' has no zeros other than 0 in some neighborhood of 0. Also it
suffices to show that the one-sided densities of f~1(E) at 0 are equal to 1. Thus we have

to show that
u(f“(E) n(,9) _

6—»0

Fix a positive number ¢ < 1 and an integer n > 1. For some §9 > 0 we can write

f(z) = az?(1+ Ea;,z"), z € (—bo,60)
h>1

where p > 2. Choose §y > 0 sufficiently small so that f' is never 0 on (0, &), without loss

of generality assume f' > 0 on (0,8p). Also assume that §, is sufficiently small so that for
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T E (0, 60),

f(z)2azP(1—¢) and  f(z) <apePTi(1+e).

Then for y = f(z) € f((O, 50))’

e ) 1 _ 1 y (1-p)/p
F )= Fi(z) = ap(l +e)’l 'z ap(1 +¢) (a(l —e))

(1= ¢)e-N/p
= al/Pp(1 + €)y(P-1/p’

We will also need the following:

Lemma: If lims—o(1/6)u(E N (0,6)) =1, then for any0 <r < s <1,
lims—o(1/8)u(E N (r6,38)) =s—r. |}

For any 6 € (0, 60), we have

-1
u(f (Eg n(0,8) _ -1 / Xpm(B)dt = + / xs(f(t)) dt

1(8)
=3 [ xee @

S 1 fes?(1-9 (1 —¢e)le—)/p
253 /; xe(y) al/Pp(1 + e)y(p—l)/rd

(- e)(P=1/p fa87(1=¢) 1
T al/Pp(1+€)é Jy x5(y) (p—x)‘/;dy
(- e)P—1)/p nl / Elasr1-o 1
- al/Pﬂl + 6)5 Z 45,(1_ o XE(y)y(P—l)/P dy
1 - ¢)(p-1)/p "-lp EN(2ab?P(1 —¢), tlabP(1 — ¢
) n n
= al/Pp(1 + €)6 = [Etlasp(1 - €) ](P-l)/p
= p(EN(2abP(1-¢), BtlaP(1 - €
E n
p(l +e £ (p—:)/p abP? '
It follows from the lemma that
e s(f~YE)N 0.6) , _1 '{2‘ l1—¢
§—0 ) p(l + e) (_-L)(P—l)/P n
(1-¢) dy (1—¢)

T+ w7~ (T4 = "7
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Since ¢ is arbitrary,

)

lim p(f~1(E)N(0,8)) _ 1
§—0 s -

as desired. JJ

2. Proof of theorem 2 f:IR — IR is constructed as follows: f(z) =z if z < 0,
f(z) =1-zifz > 1, and in each interval [5%, T(anl)']’ n > 2, wedefine fo(z) = f(z) = 1 -
z,iff 3 <z < -(ﬁ—2"“1°, and f is linear and continuous on [ﬁ-2"‘“°, 2—(#;]
See figures 1 and 2.

Let E= R\ {1/n:n=1,2,...}. Then d(0, E) = 1, however

o0
{ze R: f(z)+z € E} C(—00,0)U U ls=ry — 277" sy )
n=3
and this union has density 0 to the right of 0. Thus the map z — f(z) + z is not density-
continuous.

On the other hand, for any set S which has density 1 at 0,

FAENO, 555y 2 U £ n (% stsy)

k2>2n
2 |J £S5 N Gty %))
k2>n

since this union is disjoint and the f3’s are measure-preserving, we have

p(f71S)N (0, 552y) 2 X w(S N (ot &)

k2>n
= I‘(S N (0$ %))7

and thus
BN O k) | w(Sn (0, &)
1/(2(n - 1)) . 1/(2(n-1))
_2n-1) u(Sn(, L))
2n (1/2n)

— 1 as n — oo.

Thus f is density-continuous at 0. Clearly f is density-continuous at every other point

as well. Also note that f is differentiable at 0: see figure 2. It is straightforward (cf. figure
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2, inset) to modify the graph of f in small neighborhoods of the points where it is not
differentiable, replacing it with a suitable polynomial of degree 2, to make f differentiable
everywhere while preserving the density-continuity of f (theorem 1 is needed here) and
the discontinuity at 0 of the map z — f(z) + z. |

Remarks:

1. W. Just and independently K. Ciesielski and L. Larson constructed a C* not
density-continuous function g: IR — IR whose derivative is bounded. It is easy to see that
for a sufficiently small positive constant c, the function f defined by f(z) = cg(z) — z will
be density-continuous and that f(z) + z will not be density-continuous. Of course, since
f is C*, f(z) + = has derivative zero at the point where it fails to be density-continuous.

2. K. Ciesielski and L. Larson have independently proven theorem 1, by different
methods.
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Figure 1: Graphs of f(z) and f(z) + z.
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y A v
(e,€c/2)
z+y=t v = (c/2)u?
(—€/c €/ (2¢))
(—€/c,0) (0,0) (6,0) u
———— portion of the graph
ofy = f(z), slope = —-1on
— the left, ¢ on the right.
z+y= % d.
¢ d = (e/(1+0))(c/2+ 1 +1/(2c))
(e is a fixed positive number.)
T
z+y= 1o
Y=o
L
2n
D [ Y= g
n n
\ =1 1 —_ _n=2
VY= 8~ -1 = In(n-1)

s
an ) (n-1 z

y=fale)= k-2, E<z< g2

Remarks: 1. Since ﬁﬁ +2-m10 ¢ m, fn maps onto [m%f-_ﬁ’ =)
- 2. For z € (g, sy, the slope f(z)/z has a minimum value of 252 at z = 5o,

n
As n — oo, 2% — 1. Thus f(0) = 1.

Figure 2: Details of the definition of f(z).

Inset: Modification which makes f differentiable at the points z = 7(#5 —g-n-10,
The points z = }1; are handled similarly.
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