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 Some remarks on density-continuous functions

 1. Introduction

 Definition: The density topology on JR consists of all Lebesgue measurable sets E Ç IR

 such that for all a: € E , d(x, E ) = 1, where d(x, E ) = lim*-o(l/2£)/i(-E D (x - x + 6)).

 The density topology is a Tjj, connected refinement of the Euclidean topology (see

 e.g. [Tall]).

 Definition: If /: JR - ► JR we say / is density -continuous if / is continuous as a self-map

 of M , when JR is given the density topology.

 Several people have considered the properties of such functions. (See [Bru], [Ost 1],

 [Ost 2], [Ost 3], [Ost 4], [Nie].) The following questions are asked in [Ost 4]:

 1. Are polynomials density-continuous?

 2. Does there exist a density-continuous function / such that the function x t- ► f(x)+x

 is not density-continuous?

 Here we prove the folowing:

 Theorem 1: Real-analytic functions are density- continuous.

 Theorem 2: There is a differentiate density-continuous function f :lR -+ M such that

 /'(0) > 0 and the function x i- ► f(x) + x is not density- continuous at 0.

 2. Proof of theorem 1

 Let /: M - ► M be a real-analytic function, and fix xq € JR and a measurable set

 E Ç M such that f(x o) € E and d(f(xo),E) = 1. We must show that d(xo, f~1(E)) = 1.

 Case 1: f'(x o) ^ 0, say /'(x o) > 0. In this case the fact that / is C1 implies that

 it is density-continuous. This follows easily from the results in [Bru] but for the sake of
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 completeness we give here the following proof:

 Denote by Is the interval (/(x o - S),f(x o + S)). Let yo = /(x o). Fix e > 0 and

 choose ¿o > 0 such that /' > 0 on (x0 - <$o,xo + f°r any S € (0, S0) we have fi(E n

 Is) / fi(Is) > 1 - c and /¿(Is) /2S>(1- e)f'(x o), and for any y € Is0 we have (/-1)'(y) >

 (1 -€)(/-i)'(yo).

 Then for any 0 < S < So,

 1 1 1 f*o+6

 ^(r'E) n (x0 - S,X0 + S)) = - ^ Xf-HB)(t)dt =-j ^ XE(f(t))dt
 1 ff(* O+i)

 -^7 XE(y)(f~1)'(y)dy
 ' ff(* 0+*)

 > 57(1 20 ' - «)(/"' )'(y 0) / Xß(y)<*y 20 «//(»o-í)

 (l-e)/'(x0) _ 1

 = >(!-')'■

 Thus d(x0,/-1(i;)) = l.

 Case 2: /'(x 0) = 0. Since Lebesgue measure and the density topology are translation

 invariant, we may assume that x<> = 0 and /(0) = 0. We may also assume that / is not

 constant and thus that /' has no zeros other than 0 in some neighborhood of 0. Also it

 suffices to show that the one-sided densities of f~l(E) at 0 are equal to 1. Thus we have

 to show that

 í- 0 6

 Fix a positive number e < 1 and an integer n > 1. For some So > 0 we can write

 /(x) = axp( 1 + ^2 c¡kxk), x G (So, So)
 h>i

 where p > 2. Choose So > 0 sufficiently small so that /' is never 0 on (0, ¿o)» without loss

 of generality assume /' > 0 on (0, io)- Also assume that So is sufficiently small so that for
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 X € (O, ¿o)»

 f(x) > axp( 1 - e) and f'(x) < apxp_1( 1 + «).

 Then for y = f(x) € /((0, ¿o))>

 (/-iyCy) {f j (y) - J_ > - 1 > - 1 (
 (/-iyCy) {f j (y) - /'(«) > - ap(l + e)X > - ap(l + e) Ul - 0/

 _ (1 - e)(y-»/>
 ~ a*/*p(l + e)y(j>-i)/i»'

 We will also need the following:

 Lemma: // lim«-,o(l/¿)A<C£ H (0,£)) = 1, then for any 0 < r < 3 < 1,

 lim*- o{'ļ8)ļi{E fi ( r6,s6 )) = s - r. |

 For any 8 G (0, So), we have

 „(/-'(£) n(0,¿» _ i ļ< x/_i(g)(() dt=l-ļ' xb(/(í)) dt
 1

 = ?Jo
 1 ř*6*( 1-«) /ļ _ £'(p-l)/p

 = ai/fp( 1 + e)¿ i, XE(y'{p-i)lpdy

 (l_e)(p-D/p i
 " a»/»p(l + <0* V

 y (i - ^-1)/f> y* n (fop(i - «), - «)))
 y - a*/»p(l + e)6 ¿ [4±iaí'(l -

 It follows from the lemma that

 lim H (0, ¿)) 1 y-î 1 1 - g Äo lim 6 * p(l + e) n

 (1 + e) J0 py(P-»/P _ " (1 + e)
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 Since e is arbitrary,

 ^ n(0,f)) l
 6-0 6 '

 as desired. |

 2. Proof of theorem 2 /: jR - ► JR is constructed as follows: /(x) = x if x < 0,

 /(x) = l-x if x > j, and in each interval n > 2, we define fn(x) = f(x) = £-

 x' if 5» - x - 2(n-i) - 2~n~10, and / is linear and continuous on [3(^,1) - 2~n~10, 2^n1_1 J.

 See figures 1 and 2.

 Let E = 2R ' {1/n : n = 1, 2, . . .}. Then d(0, 5) = 1, however

 {x € R : f(x) + x€E}C (-00, 0) U Q - 2"w-10,
 n=2

 and this union has density 0 to the right of 0. Thus the map x 1- ► /(x) + x is not density-

 continuous.

 On the other hand, for any set S which has density 1 at 0,

 /_1(5) D (0, 2 (J /-1(S) n (js,
 h>n

 5 U ^¿"1(5n(5í¿fíT'ár));
 k>n

 since this union is disjoint and the fk s axe measure-preserving, we have

 n (o, ā^riīj)) ^ S v(s n (îîAîy à))
 k>n

 = /i(5 n (o, ¿)),

 and thus

 /i(/-1(5)n(0,5í¿TT)) ^ ^(5n(0,¿j))
 1/(2 (n - 1)) * l/(2(n - 1))

 = 2(n - 1) fi(S H (0, ¿))
 2n (l/2n)

 - ► 1 as n - ► 00.

 Thus / is density-continuous at 0. Clearly / is density-continuous at every other point

 as well. Also note that / is different iable at 0: see figure 2. It is straightforward (cf. figure
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 2, inset) to modify the graph of / in small neighborhoods of the points where it is not

 differentiable, replacing it with a suitable polynomial of degree 2, to make / differentiate

 everywhere while preserving the density-continuity of / (theorem 1 is needed here) and

 the discontinuity at 0 of the map x ► /(x) + x. ļ

 Remarks:

 1. W. Just and independently K. Ciesielski and L. Larson constructed a C°° not

 density-continuous function g: IR -* 1R whose derivative is bounded. It is easy to see that

 for a sufficiently small positive constant c, the function / defined by f(x) = cg(x) - x will

 be density-continuous and that f(x) + x will not be density-continuous. Of course, since

 / is C°°, /(x) + x has derivative zero at the point where it fails to be density-continuous.

 2. K. Ciesielski and L. Larson have independently proven theorem 1, by different

 methods.
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 L

 / y = /(*) + *

 y=v' / ^

 / I j' ^

 ' «

 i i- X 1 6 4 2 X 1

 Figure 1: Graphs of f(x) and f(x) + x.
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 Figure 2: Details of the definition of /(x).

 y ģ< v

 i

 i + î^=^t lì v = (c/2í)u2

 N. (-c/c,e/(2c)) . J+Ls'
 ("f/c.O) '(0,0) / (¿0) T*

 ^ ' portion of the graph
 ^

 S. V ^ ^ the left, c on the right.
 '* + y = k N. d
 'y ' d=(e/(l + c))(c/2+l + l/(2c))

 N. (e is a fixed positive number.)

 I

 2FTPĪ7

 S I

 yT ^ t/ ñ 2(n- 1) 2n(n- 1)

 _ ^ J(n-l)
 y = /»(*) = žr - *. ¿r<i< āT^Tj-2""-10

 Remarks: 1. Since j^rrj + 2"n-10 < 5^, /„ maps onto [3^, £].
 2. For x € [¿p ¿(nLi)]> the slope f(x)/x has a minimum value of at x = j^ny-

 As n - ► oo, 2^2. - ► i. Thus /'( 0) = 1.

 Inset: Modification which makes / differentiate at the points x = 2(n-i) 2~n~10.

 The points x = ^ are handled similarly.
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